[image: Cover]

 cogar :: S-100-2 Cogar System 4 System Programmers Manual Dec72

 	
 cogar :: S-100-2 Cogar System 4 System Programmers Manual Dec72

 Pages

 	
 0

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 6

 	
 7

 	
 8

 	
 9

 	
 10

 	
 11

 	
 12

 	
 13

 	
 14

 	
 15

 	
 16

 	
 17

 	
 18

 	
 19

 	
 20

 	
 21

 	
 22

 	
 23

 	
 24

 	
 25

 	
 26

 	
 27

 	
 28

 	
 29

 	
 30

 	
 31

 	
 32

 	
 33

 	
 34

 	
 35

 	
 36

 	
 37

 	
 38

 	
 39

 	
 40

 	
 41

 	
 42

 	
 43

 	
 44

 	
 45

 	
 46

 	
 47

 	
 48

 	
 49

 	
 50

 	
 51

 	
 52

 	
 53

 	
 54

 	
 55

 	
 56

 	
 57

 	
 58

 	
 59

 	
 60

 	
 61

 	
 62

 	
 63

 	
 64

 	
 65

 	
 66

 	
 67

 	
 68

 	
 69

 	
 70

 	
 71

 	
 72

 	
 73

 	
 74

 	
 75

 	
 76

 	
 77

 	
 78

 	
 79

 	
 80

 	
 81

 	
 82

 	
 83

 	
 84

 	
 85

 	
 86

 	
 87

 	
 88

 	
 89

 	
 90

 	
 91

 	
 92

 	
 93

 	
 94

 	
 95

 	
 96

 	
 97

 	
 98

 	
 99

 	
 100

 	
 101

 	
 102

 	
 103

 	
 104

 	
 105

 	
 106

 	
 107

 	
 108

 	
 109

 	
 110

 	
 111

 	
 112

 	
 113

 cogar :: S-100-2 Cogar System 4 System Programmers Manual Dec72
This book was produced in EPUB format by the Internet Archive.
 The book pages were scanned and converted to EPUB format automatically. This process relies on optical character recognition, and is somewhat susceptible to errors. The book may not offer the correct reading sequence, and there may be weird characters, non-words, and incorrect guesses at structure. Some page numbers and headers or footers may remain from the scanned page. The process which identifies images might have found stray marks on the page which are not actually images from the book. The hidden page numbering which may be available to your ereader corresponds to the numbered pages in the print edition, but is not an exact match; page numbers will increment at the same rate as the corresponding print edition, but we may have started numbering before the print book's visible page numbers. The Internet Archive is working to improve the scanning process and resulting books, but in the meantime, we hope that this book will be useful to you.
 The Internet Archive was founded in 1996 to build an Internet library and to promote universal access to all knowledge. The Archive's purposes include offering permanent access for researchers, historians, scholars, people with disabilities, and the general public to historical collections that exist in digital format. The Internet Archive includes texts, audio, moving images, and software as well as archived web pages, and provides specialized services for information access for the blind and other persons with disabilities.
Created with abbyy2epub (v.1.7.6)

This publication is designed to be used as a reference manual by programmers using the Cogar System 4®Processor. The manual is divided into three parts. Part I defines the unique features of the machine which are relative to the programmer, as well as providing a machine specification summary. Part II provides general information on the usage of each group of instructions in the instruction set repertoire. Part III defines each instruction in detail, and provides the timing and an example of how each instruction may be used in context with surrounding instructions, in both Source and Object coding. A summation of all the instructions in the repertoire is contained on the Cogar System 4 Instruction Reference Card.
Other publications relating to software for the Cogar System 4 are:
Batch Assembler Operating Instructions; which contains the step-bystep instructions for creating a self-loading program tape, which has been assembled as part of an Object-String background.
Standard Cogar Library Functions; which contains descriptions and operating instructions for the Language Base Library and the I/O Libraries.
The programmer should be familiar with the content and design objectives of the above documents in order to make full use of the capabilities of the Cogar System 4 Processor.
COGAR SYSTEM 4 IS A REGISTERED TRADEMARK OF COGAR CORPORATION
PROGRAMMER'S REFERENCE MANUAL
Table of Contents
Paai
COGAR INSTRUCTION DESCRIPTION INDEX c.
SPECIFICATION SUMMARY e.
SECTION I. GENERAL
System Features 1
Language Features 1
lOS Features 2
Assembler Features 2
Display 3
Keyboard 4
Cartridge Tapes 4
Operator Controls 7
SECTION II. INSTRUCTION USAGE
Subroutine Control 8
Registers 11
Addressing 11
Symbol s ; 13
DPL-1 Instruction Classes 14
DPL Punctuation 16
Literal Notations 16
Standard C4 Program Record (Mini-Tape) 17
Subroutine Relocatability 19
Tape I/O Character Queue 19
SECTION III. INSTRUCTION DESCRIPTIONS
General 21
Class j9: Jump 22
Class 1: Branch 26
Class 2: Transfer 46
Class 2: Ordinary Arithmetic 50
Class 3: Boolean Arithmetic 54
Class 3: Compare 60
Group 1: I/O Functions 62
Group 2: Data Modify 68
Group 3: Compay^e 73
Group 3: Select 74
Group 4: Control Functions 81
Notations for DPL-3B Constants 85
DPL-1 Pseudo Instructions 86
DPL-1 Branch and I/O 95
APPENDIX 101
Mnemonic Name
ADA Add to Accumulator
ADD Add Storage to Storage
ADX Add to Index Register
ANA Logical 'AND' to Accumulator ••
BRE Branch on Equal • •
BRH Branch on High
BRL Branch on Low • • •
BRU •••• Branch Unconditional
COM •••• Compare Storage to Storage •
CPA Compare Accumulator
CPI Clear Processor Interrupt ••• •'
CPX Compare Index Register
DIV •••• Divide
DPI '='' Disable Processor Interrupt
EJT Eject to Top of Form
END End Segment •••••• • • • • •
ENT •••• Enter Control Function
EPI Enable Processor Interrupt ••
EQU • • • • Equate Symbol •
ERA Exclusive 'OR' to Accumulator
EXB •••' Exit and Branch
EXU Exit Unconditional
GET •••• Get Data (Read)
I0C-C#3 ••• I/O Keyboard •••••
IOC-C#N ••• I/O Mini-Tape •
I0C-C#4 ••• Display Control
IRA •••• Inclusive 'OR' to Accumulator
LDA •••• Load Accumulator
LDX •••• Load Index Regi ster ••
LIA Load Instruction Address •
LPS Load Processor Status -.••••..
LSW •••• Load Sense Swi tches • ••
MOV Move Storage to Storage • •
MUL •••• Multiply •
ORG Origin Location Counter
OVL Overlay
PCL-PRT ••• Line Printer Control
PCL-TYP ••• Typewriter Control
PUT Put Data (Write)
SAC Set Arithmetic Condition — •
SAN Shift & Logical 'AND' to Accumulator
SBE Stack and Branch on Equal '
SBH Stack arM Branch on High
Format
Page
	DPL-1 ••
	• 50

	DPL-2 ••
	■ 69

	DPL-1 ••
	• 51

	DPL-1 ••
	• 54

	DPL-1 ••
	• 27

	DPL-1 ••
	• 28

	DPL-1 ••
	• 29

	DPL-1 ••
	• 25

	DPL-2 ••
	• 73

	DPL-1 ••
	• 60

	DPL-1 • •
	• 45

	DPL-1 • •
	• 61

	DPL-2 • •
	• 72

	DPL-1 ••
	42

	DPL-1 ••
	94

	DPL-1 ••
	• 93

	DPL-1 •••
	88

	DPL-1 ••
	43

	DPL-1 ••
	■ 90

	DPL-1 ••
	• 56

	DPL-1 •••
	34

	DPL-1 •••
	• 35

	DPL-2 ••'
	62

	DPL-1 •••
	98

	DPL-1 ••■
	95

	DPL-1 ••
	• 99

	DPL-1 •••
	58

	DPL-1 ••■
	46

	DPL-1 • ••
	47

	DPL-1 ••
	■ 48

	DPL-1 ••
	• 41

	DPL-1 ••■
	40

	DPL-2 • • •
	68

	DPL-2 ••■
	71

	DPL-1 ••
	86

	DPL-1 ••
	91

	DPL-2 ••
	84

	DPL-2 ••
	• 83

	DPL-2 ••
	• 64

	DPL-1 ••
	- 39

	DPL-1 ••
	• 55

	DPL-1 ••
	• 31

	DPL-1 ••
	' 32

COGAR INSTRUCTION SET INDEX
Mnemonic Name Format Page
SBL Stack and Branch on Low DPL-1 ••• 33
SBU Stack and Branch Unconditional DPL-1 ... 30
SEG Identify Segment DPL-1 .-• 87
SEL-EQL Selcect Equal DPL-2 ... 76
SEL-HGH Select High DPL-2 ... 77
SEL-LOW Select Low DPL-2 ... 75
SEL-NEQ Select Not Equal DPL-2 ... 79
SEL-NH6 Select Not High DPL-2 ... 78
SEL-NLW Select Not Low DPL-2 ... 80
SEL-UNC Select Unconditional DPL-2 ... 74
SER Shift and 'EOR' Accumulator DPL-1 ... 57
SET Set Page DPL-2 ... 81
SIR Shift and 'lOR' Accumulator DPL-1 ... 59
SMC Set Memory Control DPL-1 ... 37
SMS Set Memory Section DPL-1 ... 36
SSC Set Memory Section and Control DPL-1 ... 38
STA Store Accumul ator DPL-1 ... 49
SUA Subtract from Accumulator DPL-1 ... 52
SUB Subtract Storage to Storage DPL-2 ... 70
SUX Subtract from Index Register DPL-1 ... 53
TCL Tape Control Command DPL-2 ... 82
TLJ Test Literal and Jump DPL-1 ... 22
TLX Test Literal and Exit DPL-1 ... 24
TMJ Test Mask and Jump DPL-1 ... 23
TMX Test Mask and Exit DPL-1 ... 25
USE Use External Source Segment DPL-1 ... 92
SPECIFICATION SUMMARY
Size
10 inches high (25 cm) 18.5 inches wide (47 cm) 24 inches deep (60 cm)
	Weight
	60 pounds (27 kg)

	Power
	115 VAC ±10%, 220 VAC

	
	48 to 62 Hz

	
	2.5 amps average

:10%
Environment 10% to 80% relative humidity without
condensation 60°F to 95°F Operating Temperature 0°F to 150°F Storage Temperature
Ventilation 30 cubic feet per minute air flow
4 inches air flow clearance on all sides 1000 BTU per hour heat dissipation
Processor 45 instruction types plus I/O
3 to 6 [jls Instruction cycle time 1 Accumulator
7 Index Registers per 2K of memory 16 Member Instruction Address Stack Hardware Bootstrap Loader
IVIemory
i6K bytes capacity Random Access Read/Write Non-Destructive Read-Out Monolithic Semiconductor
Keyboard Software configurable
Hall effect keys N-Key rollover capability Audible cue
Visual Display 5 inch CRT
4 or 8 line display, with interleave
capability 32 characters per line 5x8 matrix under program control
Tape System 10 ips write tape speed
1600 bpi density, phase modulation 2 mechanically independent transports Read after Write, CRC, phase checks Automatic threading Write interlock switch Rewind: 40 ips rewind and forward or rewind search
Tape Cartridges
100 ft. computer grade tape
900 records of 136 characters each
Write/Erase Protection
SECTION I. GENERAL
1. SYSTEM FEATURES
The Cogar System 4 is a compact, operator-oriented, general purpose data processing system. It combines, in a single unit, an input keyboard, magnetic tape transports, CRT visual display, I/O interface, solid state memory and a versatile processor. The System architecture closely integrates the functioning of all sub-systems and features transparency of graphics and coding. All major system functions are under program control The processor structure is designed to optimize byte handling and interpretation, and provides automatic threading of recursive subroutines.
The nature of the processor design and its relationship to the other system components make the Cogar 4 heavily dependent on software. This means that the system is uniquely flexible in the jobs it can perform and is especially adaptable for various operator and interfact applications. It also means that software is an essential ingredient that must be as fully and carefully integrated into the System as the other components.
The Cogar 4 is a binary machine using 8-bit bytes in its memory organization and most hardware data paths. Its operations are highly memory oriented and are designed to take advantage of the performance of its semiconductor storage.
2. LANGUAGE FEATURES
The language base for the Cogar System 4 is flexible, easy to learn and use, yet permits the programmer to take full advantage of the System 4's power. The Cogar Language Base is comprised of a comprehensive set of "Pre-packaged" functions to facilitate modular program construction. The Cogar Assembler provides linkage between these functions and the specialized routines necessary to a given application.
Programs are written and assembled in symbolic notation, with the final stage of the assembly effecting a merge of the specialized routines and the pre-packaged background functions. This method of assembly allows easy and rapid modification or correction of programs or the re-configuration of a program to accomodate different peripheral devices or the selection of a new or modified graphic set, or keyboard configuration.
The DPL-1 instructions for the Cogar 4 are machine level instructions that are directly executed while the DPL-2 commands are executed interpretively by a resident software monitor. DPL-1 instructions are two bytes long and must occur on even byte boundaries. DPL-2 commands are four bytes long and should also occur on even boundaries. When DPL-1 and DPL-2 are intermixed, a new language is formed called DPL-3. The batch assembler for DPL-3 is known as DPL-3B. A subset of the DPL-2 monitor that handles I/O function is known as the I/O Supervisor or lOS. This manual describes DPL-1 and lOS as assembled on DPL-3B.
In order to be able to tailor the system for optimum use with particular applications, many device functions have been designed for program control. The codes generated by the keyboard, for example, correspond not to the key character, but to the key location. A translate table is located in the processor memory and is used to convert a key code into a character code. The user program can easily modify the translate table and can thus produce any desired code for any key.
The visual display uses a 5 x 8 dot matrix to form each display character and has cursor control with each character. The dot matrix is stored in the processor memory so that any possible 5 x 8 combination may be generated by the user program to be displayed for any character code. The standard dot pattern uses a 5 x 7 dot matrix to form the desired character. This provides for a space between the character and the cursor.
The Cogar 4 provides an unusually efficient subroutine control mechanism that is easy to use, yet offers powerful capabilities.
3. lOS FEATURES
Cogar has designed an Input/Output Supervisor to provide easy access for the user to a set of standard I/O routines. The flexibility of the system peripheral device operations is still available for special applications, but most I/O operations can be accommodated by the I/O Supervisor. lOS is a memory resident software monitor that is accessed using the ENT:IOS pseudo command. It performs a complete single operation and automatically returns control to the user program.
4. ASSEMBLER FEATURES
Computer programs must always eventually be expressed in machine language. The machine only understands binary numbers and programs so expressed are called Object programs. There are some circumstances when it is desirable for the system user to be able to write Object instructions directly. Most of the time, however, it is much more efficient to use an instruction language that is easily interpreted by the user. The mnemonic expressions used to represent the Object language form a Symbolic language. An Assembler is a program that translates a Symbolic program into an Object program.
Since the programmer spends much of his time communicating with the Assembler, it is useful to supply commands that control the operations of the Assembler itself. These commands are called Pseudo instructions and normally do not result in any Object coding. Another class of Pseudo instructions used in the Cogar 4 Assembler to control executive monitor operations does generate Object coding.
The Cogar Batch Assembler, known as DPL-3B, provides many features designed to streamline the programming process. Comments may be inserted in the Symbolic program to help identify the operations taking place. Instructions, data, constants and locations may all be referred to symbolically. Diagnostics are generated to help identify errors in the program. Editing, display and printing of both Object and Symbolic programs are available as part of the DPL-3B package.
The Cogar Assembler also handles the appropriate translations, controls, and linkages for the lOS and DPL-3 monitors.
DISPLAY
Keyboard Transparency:
The Cogar System 4 is designed to provide code hardware transparency. Any keyboard character may be automatically translated to any desired code and any dot matrix pattern may be displayed for a given character code. These functions are directly under software control and are thus available to the programmer.
Selective Blanking:
The commonly used internal key and character codes in standard Cogar software are shown in Table 1. Notice that the high order octal digit is always zero. This digit corresponds to the bits six and seven of the character byte. These two bits are used to provide added features for the CRT display. If a 1 is inserted in bit 7 (changing the code for A, for example, from 015 to 215) of a character in the CRT buffer area, that character will be displayed on the screen as a blank.
Cursor Underscore:
If a 1 is inserted in bit 6 (changing the code for A, for example, from 015 to 115) of a character in the CRT buffer area, that character may be displayed with an underline. The underline feature must be enabled by adding octal 1 to the second octal digit of the display base enable function codes. Thus, to permit underlines in display base 2 the normal display enable of IOC, C#3; 023 becomes IOC, C#4; 033. The underline feature is a convenient means of providing a cursor.
Selective Interlace:
Dann
fl 9Q V ■ ■ ■
■'jr oco J
Memory areas displayed are program selectable from any one of 16 memory Pages (256 bytes per Page)3 with provision for half play only or for selective interlace of half-Pages.
KEYBOARD
When a character key is depressed on the keyboard after a Transfer Byte IOC, it causes a key code to be loaded into the accumulator. The NUM (numeric), CTRL (control) and ALPHA (alphabetic) are three special keys that act on bits 6 and 7 of the key code for any key pressed while one of them is held down. NUM turns on bit 6, CTRL turns on bit 7, and ALPHA turns on both 6 and 7. If none of the special keys are activated, bits 6 and 7 remain off. The following procedure may be used to translate the key code residing in the accumulator into a character code.
The 6th and 7th
are taken care of as follows:
6th bit on: 7th bit on:
6th and 7th bits on:
do not change
turn 7th bit off (reset after translation, if desired).
turn 6th and 7th bits off (reset after translation, if desired).
b. Store the result in an index register
c. Add to the index register the displacement within the page of the beginning of the translate table. The standard translate table in page 05, for example, starts at location decimal 064, therefore, add decimal 064 to the value of the index register containing the key code before translation.
d. Load the Accumulator using indexed addressing and the page where the translate table resides. The Accumulator now contains the character code for the key that was depressed. The translate table may be designed by the user to supply any desired 8 bit character code including ASCII, EBCDIC, etc.
CARTRIDGE TAPES
The resident software I/O Supervisor provides for the actual reading, writing and tape positioning of the Mini-Tape. The user will often want to test the status of the tape drives for his own purposes. For example, to check the presence of a cartridge on a particular tape drive, first execute a Status instruction (IOC, C#N; 016), then test with a mask of 020 (TMJ, +NN; OCT:020). If the condition is satisfied, the cartridge is not present. Any of the status byte conditions may be tested by first loading the status of the device in question into the accumulator, and then testing it against the literal mask specified.
	
	
	00 01 02 03
	04 05 06 07 10
	^
	
	-SCRATCH AREA13 14 15
	
	^
	OCf
	lUENCE STORAGE AREA 21 22 23 24
	
	
	
	-^
	
	
	—
	START BOOTSTRAP LOAD

	
	11 12
	16 17
	20
	25 26 27
	30 31
	32 33 34
	35 36 37
	40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57* 60 ,61 62 63 64 65 ,66 67' 70 71 72 73 74 75 76 77 (

	
	
	000 100 200 300 000 100
200 300 000 100 200 300 000 100 200 300
	
	XR1
	XR2
	XR3
	XR4
	XR5
	XR6
	XR7
	CRC
	1
	2
	3
	4
	5
	6
	7
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	SP0
	SPl
	SP2
	SP3
	SP4
	SP5
	SP6
	1 SP7
	SP8
i
	SP9
	SPIO
	SP11
, [,
	SPl 2
	SP13
	SP14
1
	SP15

	PAGE 00
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	END
	BOOT
	STRAP
	LOAD
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	
	
	
	'
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	r"
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PAGE 01
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	[.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	* 1
	m F
	R06R
	M ST
	iRTS
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PAGE 02
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	* 1
	(TERR
	UPT
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PAGE 03
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	r- SPARE
/ 1 '
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Jlj
	/ ^
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	CRT m
DOT PATTERN
	000 100 200 300 000
	SP 000
	oTo
	010
	0 070
	4
	2 162
	3 042
	4 030
	5 047
	6 074
	7 141
	0 066
	9 106
	,?4
	177
	C 076
	D 177
	E 177
	F 177
	G 076
	H 177
	1 000
	J 060
	K 177
	L 177
	177
	N 177
	G 177
	P 177
	Q 07?
	177
	s
042
	T 001
	U 007
	V 007
	W 177
	X 143
	Y 007'
	Z 141
	000
	# 074
	@ 1)14
	flin
	% 143
	$
044
	* 052
	000
	ODD
	>
101
	/ 040
	034
) 000
	7
000
	034
	024
	ODD
	1 ODD
	ODD
	000
	000
	100
	002
	&
060
	1 000

	
	000
	010
	010
	101
	102
	111
	101
	024
	1^5
	112
	021
	111
	111
	022
	111
	101
	101
	111
	Oil
	101
	010
	101
	100
	010
	100
	002
	006
	101
	Oil
	101
	Oil
	105
	001
	100
	030
	040
	024
	010
	121
	130
	167
	062
	010
	023
	052
	034
	140
	DID
	042
	020
	042
	000
	002'
	042
	024
	007
	ODD
	007
	000
	000
	100
	002
	116
	000

	PAGE 04
	000
	010
	170
	101
	177
	111
	111
	022
	105'
	111
	Oil
	111
	111
	021
	111
	101
	101
	111
	Oil
	101
	010
	177
	100
	024
	100
	014
	010
	101
	Oil
	121
	031
	111
	177
	100
	140
	030
	010
	170
	111
	070
	000
	052
	010
	010
	177
	076
	140
	024
	024
	010
	101
	101
	001
	177
	024
	ODD
	137'
	007
	066
	133
	100
	002
	131
	177

	
	000
	010
	010
	101
	100
	111
	111
	177
	105
	111
	005
	111
	05 f
	022
	111
	101
	101
	101
	001
	111
	010
	101
	100
	042
	100
	002
	060
	101
	Oil
	041
	051
	12f
	001
	100
	030
	040
	024
	010
	105
	000,
	167
	072
	010
	144
	052
	034
	000
	042
	010
	004
	000
	042
	131
	042
	024
	007
	ODD
	000
	066
	073
	100
	002
	046
	177

	
	KEYPUNCH ^
TRANSLAIlE TABLE
	000
	010
	010
	076
	000
	106
	066
	020
	071
	060
	003
	066
	036
	174
	066
	042
	076
	101
	001
	171
	177
	000
	077
	101
	100
	177
	177
	177
	006
	136
	106
	042
	odi
	007
	007
	177
	143
	007
	103
	000
	024
	074
	010
	143
	022
	052
	ODD
	101
	000
	002
	000
	034
	006
	000
	024
	000
	ODD
	000
	000
	ODD
	100
	016
	120
	000

	
	100 200
	000
	START 201
	061
	% 053
	* 055
	< 057
	MINUS 206
	DUP
297
	Q01
	/ 0(1
	P.SEL 212
	REL 213
	BSR 214
	i.O.F. 215
	Q 035
	W 043
	E 021
	R 036
	T 040
	Y 045
	U 041
	1 025
	0 033
	P 034
	BSF 230
	L/Z 231
	ERR ^ 232
	000
	000
	ODD
	ODD
	A 015
	S 037
	D 020
	F 022
	G 023
	0^.
	J 026
	K 027
	L 030
	SKIP 250
	HOME 251
	BLK QOO
	Z 046
	000
	ODD
	X 044
	000
	C 017
	V 042
	B 016
	N 032
	M 031
	047
	056
	COR 267
	SPACE 000
	EOJ 271
	
	
	
	
	
	

	PAGE 05
	000
	^ART 201
	050
	047
	$ 054
	>ERI0l 056
	MINUS 206
	DUP 207
	001
	1
003
	».SEL 212
	REL 213
	BSR 214
	E.0.F 215
	002
	074
) 063
	065
	T 040
	1 077
	1 004
	2 005
	3 006
	&
076
	BSF 230
	L/Z 231
	ERR 232
	000
	000
	000
	ODD
	A 015
	> 060
	072
	073
	075
	071
	4 007
	5 010
	6 Oil
	SKIP 250
	HOME 251
	BLK 000
	Z 046
	000
	000
	? 064
	ODD
	067
	066
	! 070
	(062
	7 012
	8 013
	0?.
	COR 267
	SPACE 000
	EOJ 271
	
	
	
	
	
	

	
	300 000 100 200 300
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PA^06
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	000 100 200 300
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PfGE 07
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	■
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	.. _ .
	
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

01 02 03 04
06 07 08 09 10
12 13
16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 STACK POINTER
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5f 52 53 54 55 56 57 58 59 60 61 62 63
DECIMAL NOTATION
ou
START
m^ ^
*
0^
MINUS
DUP
PROG SELKT
PEL
BKSP^ RECORd
END FILE
-^ LOC:040 0778
I R#1 |r#2 |R#3 I R#4| R#5| R#6 I R#7 h
' I I ' I ' I ' I ' I ' I
INDEX REGISTER ARRAY (one per section)
^
^
32]
a
w
ERROR
W
A
M"
NUM
R
CTRL
D
w
43
' F
c
u
V
H
H"
0
30]
BKSP FIELD
fX
N
K
M
M] SKl'P
_66]
9
CORR
.^
LEFT ZERO
HOM
EOJ
ALPHA
LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 LEVEL 6 LEVEL 7
P05
P06
P07
m
U
xM
P15
P16 P17
P26
m
P35
P36
P40
P42
P43
P45 P46
P47
P50
P51
P52
P53
P57
P60
P61
P62
PBS
P70
P72
P75
P76
P77
^SPACE BAR
Figure lb. Standard Keypunch Keyboard Layout.
SECTION 0 SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5 SECTION 8 SECTION 7 •- 4K ^ I
*SHADrO AREA^ OISPLAYABLE PAGES
Figure Ic. Memory Map Layout.
TABLE I. KEY AND CHARACTER CODES FOR COGAR 4 KEYPUNCH KEYBOARD.
	KEY
	KEY
	CHAR
	KEY
	KEY
	CHAR
	KEY
	KEY
	CHAR
	KEY
	KEY
	CHAR
	KEY KEY
	CHAR

	
	CODE
	CODE
	
	CODE
	CODE
	
	CODE
	CODE
	
	CODE
	CODE
	CODE
	CODE

	Space 070
	000
	A
	037
	015
	N
	063
	032
	9
	065
	047
) 120
	063

	
	010
	001
	B
	062
	016
	0
	026
	033
	9
	103
	047
	? 156
	064

	+
	116
	002
	C
	060
	017
	P
	027
	034
	#
	102
	050
	i 121
	065

	0
	111
	003
	D
	041
	020
	Q
	016
	035
	(3
	002
	051
	= 161
	066

	1
	124
	004
	E
	020
	021
	R
	021
	036
	%
	003
	053
	" 160
	067

	2
	125
	005
	F
	042
	022
	S
	040
	037
	$
	104
	054
	! 162
	070

	3
	126
	006
	G
	043
	023
	T
	022
	040
	*
	004
	055
	' 144
	071

	4
	145
	007
	H
	044
	024
	U
	024
	041
	.
	105
	056
	: 141
	072

	5
	146
	010
	I
	025
	025
	V
	061
	042
	.
	066
	056
	; 142
	073

	6
	147
	Oil
	J
	045
	026
	W
	017
	043
	<
	005
	057
	- 117
	074

	7
	164
	012
	K
	046
	027
	X
	056
	044
	> 140
	060
	-, 143
	075

	8
	165
	013
	L
	047
	030
	Y
	023
	045
	/
	on
	061
	& 127
	076

	9
	166
	014
	M
	064
	031
	Z
	053
	046
	(
	163
	062
	1 123
	077

CONTROL KEYS
	KEY
	KEY CODE
	CHAR CODE
	KEY
	KEY CODE
	CHAR CODE
	KEY
	KEY CODE
	CHAR CODE

	START
	001
	201
	BKSP RECORD
	014
	214
	HOM
	051
	251

	MINUS
	006
	206
	END FILE
	015
	215
	CORR
	067
	267

	DUP
	007
	207
	BKSP FIELD
	030
	230
	EOJ
	071
	271

	PROG SELECT
	012
	212
	ERROR
	032
	232
	LEFT ZERO
	031
	231

	REL
	013
	213
	SKIP
	050
	250
	
	
	

Write Pin Enable
A Write Pin Sensor in the SYSTEM 4 requires that if a tape is to be written on^ the write plug must be in the proper position. Otherwise, tape will not move and no write operation can be performed on that deck until a cartridge is inserted with the write pin in place.
Physical End of Tape Sensing
The SYSTEM 4 tape cartridges contain a reflective spot to notify the program that during a write operation, the Physical End of Tape is approaching. The user may write beyond this point if so desired. The Mini-tape VvTite Software function detects this condition and provides the tape status for the user to test. Once the EOT is detected, this condition remains set until a Rewind operation is initiated.
OPERATOR CONTROLS
A Switch Well located beneath the CRT screen contains eight sense switches^ a Program Load/Program Interrupt switch, and a System Reset switch.
Sense Switches
These eight toggle switches may be manually set by the user to any combination of eight bits. The setting of these switches may then be tested by the user program at selected times, to control specialized applications.
Program Load/Program Interrupt Switch
This toggle switch initiates a tape load cycle when pushed toward the CRT (Momentary position), or initiates a Program Interrupt when set in the ON position (away from the CRT screen).
With the switch set to ON, the user program may test the condition to provide automatic linkage to the Interrupt Routine. Return to the point of interrupt will occur after the interrupt routine has been completed, and an Exit instruction to the Stack Level established by the interrupt has been executed.
System Reset Switch
When this push button switch is pressed, a System Reset pulse is generated which resets the Stack Pointer to Stack Level 1 and forces the instruction address to P02-000 where processing is then initiated.
SECTION II. INSTRUCTION USAGE
SUBROUTINE CONTROL:
The Instruction Address Stack (IAS) is located in memory and consists of sixteen Instruction Address Words (lAW) of two bytes each. Access to the Stack is under control of a four-bit register called the Stack Pointer. The current instruction address is contained in the lAW indicated by the Stack Pointer.
During sequential instruction operations, the Instruction Address is retrieved from the lAW, used to locate the current instruction, incremented by two, and inserted back into the IAW. For branch operations, a new Instruction Address is inserted into the current lAW and execution continues with the new address.
To enter a subroutine, the Stack Pointer is incremented so that it now points to a new lAW location and the subroutine address is inserted in the Stack as the new lAW. Normal sequential operation then proceeds. Note that the content of the previous lAW has not been disturbed and may be returned to by simply decrementing the Stack Pointer with an Exit instruction. Thus it is not necessary to provide space in the sub-routine for return address storage. If more than 16 levels of stack and branching has occured an automatic wrap-around to stack level 1 will be initiated.
Figure 2 is a diagram of the IAS and shows the actual octal locations of the stack bytes in page JQJ9. Assume that the Stack Pointer is indicating lAWl as the location of the current Instruction Address. Sequential or Branch operations of the mainline program change the contents of lAWl but do not affect the Stack Pointer. When the mainline program encounters a Stack and Branch instruction, however, the Stack Pointer is incremented to indicate IAW2 and the Branch address is inserted into IAW2. If the Stack and Branch instruction was located at Page 10, location 52, lAWl will now contain the coding to indicate Page 10, location 52, and IAW2 will become the current location counter. The subroutine indicated by IAW2 may reference other subroutines in which case IAW3, IAW4, etc. may be used. When the IAW2 subroutine is finished, an Exit instruction is executed which simply decrements the Stack Pointer and returns program control to lAWl at the instruction following the original Stack and Branch. If the exit instruction was located at Page 13, location 220, IAW2 will be left with the coding for Page 13, location 220. A subsequent mainline Stack and Branch would insert a new Branch address into IAW2.
Note that the low order bit of the location may be on. This bit must be removed,by using the "ANA" instruction if the user desires to use this address after a load processor status operation (See "LPS" instruction)
lAWl
IAW2
IAW3
IAW4
IAW5
	Octal Loc.
	
	DPL Page

	Address: jO4j0 CONTENT: BSSq
	
	Address: j041 CONTENT: ,01.08

	Address: J342 CONTENT: 2218
	Address: 043 CONTENT: 0183

	Address: 044 CONTENT:
	Address: 045 CONTENT:

	Address: 046 CONTENT:
	Address: 047 CONTENT:

	Address: 05j0 CONTENT:
	Address: 051 CONTENT:

	^
	" '

	
	" "

	lAWl 5
	Address: 074 CONTENT:

	IAW16
	Address: 076 CONTENT:

Address: 075 CONTENT:
Address: 077 CONTENT:
J
o
stack Pointer
Figure 2., Snapshot of Instruction Address Stack after completion of EXU Instruction (See Example).
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI 0-050: P10-052: PI0-054: P13-174: P13-176: PI 3-200: P13-220:
200-024. 123-174. 237-054. 230-011. 203-234. 014-027. 140-000.
01-010. EAB: LDA,
01-020. SBU:
01-030. STA,
01-040. DLY: STA,
01-050. LDX,
01-060. TLJ,
01-070. EXU:
R#0; OCT:024. DLY.
R#7; Pll. R#0; L#l. R#3; DEC:156. +12; (K).
	
	Byte 1
	(Octal Loc.)
	
	
	
	Byte 2
	(DPL Page)
	
	

	LOCATION
	U Bit
	V Bit
	Section Number
	Page Number

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

INSTRUCTION LOCATION (Octal 000 to 376)
MEMORY CONTROL
0 = Direct Address
within Section 0, Page 0.
1 = Direct Address
within current section. Page 0.
RELOCATABLE BRANCH CONTROL
0 = Normal processing,
1 = Relocatable Branch functions.
(See SMC Instruction)
SECTION NUMBER
Section 0 through Section 7.
PAGE NUMBER
Page 0 through Page 7 (within a section)
Figure 3. Instruction Address Word Layout.
10
REGISTERS: /
The Cogar 4 contains one general purpose accumulator that is eight bits (one byte) long. Almost all of the nonbranch DPL-1 instructions refer to the accumulator. It is the major center for processor activity and the primary pipeline for data flow to and from the memory and the peripheral devices.
The Cogar 4 contains seven one-byte index registers for each memory section available. They are often used as address displacements in indexed addressing, but may also be used as general purpose registers. A few of the DPL-1 instructions act directly on the index registers, but there is much more flexibility than those instructions imply because the registers are located in memory, They may thus be addressed by all memory reference instructions. The accumulator can retrieve, manipulate and restore the contents of any index register.
The hardware condition register contains the results of Test and Compare instructions. It may be set to High, Equal or Low and retains its status until a new Test or Compare is executed. The operation of DPL-1 conditional Branch instructions depends on the status of the hardware condition register.
ADDRESSING:
The Cogar 4 contains 4K, 8K or 16K bytes of memory, with an lAW 16 bits long. Indirect addressing may operate anywhere within this range. The total memory capacity is divided into eight Sections of 2j048 bytes each, requiring 11 bits to fully address. Branch operations (if not preceded by a "SMS" instruction) may refer only to locations within a Section. Each Section is further divided into eight pages of 256 bytes each, requiring eight bits to fully address. Direct addressing (page JO of the current control section) or relocatable subroutines (branch operations with page J0 assigned) may refer to one page only.
The object formats shown with the instruction descriptions include the following Binary Notations:
Z = 1 bit frame
Y = 2 bit frame
X = 3 bit frame
JJ = 4 bit frame
11
	
	Instruction Addressing:
All instruction addressing is relocatable page oriented. The address specification, in octal notation (object), is Pnn-LLL where nn = SL, S is the Section number, L is the Level number and LLL is the byte location within the page.
All instructions are retrieved from memory using the current Instruction Address Word, and all instruction addressing involves modification of the lAW.
For sequential execution of instructions, one of the sixteen lAW's within the Stack is incremented by two during each instruction cycle. Instructions may be executed sequentially within a Section or across Section boundaries. It is important to note that when instructions cross a Section boundary, the branch functions, if executed, will transfer control to the Section that was previously set. Other functions are not affected. A "Set Memory Section" instruction is used to change the section context of the IAW for branch instructions.
A jump to a new instruction location uses relative instruction addressing by adding or subtracting up to 15 instruction locations to or from the current lAW. A Jump may be across a Section Boundary.
ADDRESS NOTATIONS

	
	AAA
	DDD = Absolute Address, in decimal notation
SSS = Symbolic Address
RRR = Symbolic Branch Reference
NNN = Address Adjustment for Symbolic Addresses, in decimal notation
	

	PPP
	Pnn = Absolute Page Number, in decimal notation SSS = Symbolic Page Number

	
	
	

12
Data Addressing:
Data is addressed by an instruction in three different modes: Immediate, Direct and Indexed.
When using the Immediate Addressing Mode, the operand itself, instead of the operand address, is assembled within the instruction as a selfdefining literal . The literal represents data rather than an address of data. Literals provide a means of entering constants into a program by specifying the constant in the operand of the instruction in which it is used. Immediate Addressing is differentiated from Direct Addressing by the operand form.
Direct Addressing Mode uses the instruction operand as the address of a byte location for all page numbers within level j0. This mode is utilized by specifying in the operand, any form of Direct Address notation. All DPL-1 functions may take this form of operand except Class 0 and Class 1 Instructions.
The Indexed Addressing Mode provides a method of addressing data anywhere within memory. An Indexed Address is composed of a displacement address contained in a specified index register plus a base address contained in the operand. The register specifies the location within a page and the operand specifies the page within memory. The index register in use may be unchanged, incremented by one or decremented by one following the indexed operation. There are three forms of register notation used to specify this option. X may be any integer from 1 through 7.
R#X = Retain Register Value
I#X = Increment Register after Instruction Execution
D#X = Decrement Register after Instruction Execution
When an overflow occurs (I#X), the overflow bit is lost and the register contains octal jajDjD. When an underflow occurs (D#X), the result is the two's compliment of the underflow count.
SYMBOLS:
Program elements, such as instructions or constants, may be referenced in an instruction by specifying the absolute address of the element. The form for this type of reference is Pnn, LLL. Pnn specifies the page in 2 digit decimal notation from jO0 to 63 and LLL specifies the location within the page in 3 digit decimal notation from JOJ0JO to 255.
13
It is often more convenient to refer to program elements symbolically. In the DPL-3B Assembler, a symbol is a combination of characters used to represent a program element. Symbols are defined through their use in the label field of an instruction or through the EQU pseudo instruction. A Symbol may be used only once in a label field within one program. When a symbol is used as an instruction operand, it must be defined somewhere in the program. A symbol must be comprised of three non-blank alphanumeric characters with the first character non-numeric. If the first character is "P", the following characters must be alphabetic. The total number of symbols plus ORG statements plus page boundaries crossed by sequential program operation is limited to a maximum of 128.
Address adjustment may be used for convenience and to cut down on the number of symbols defined. A signed numeric adjustment in decimal bytes from fi to 255 may be appended to a symbolic reference or may be used relative to the current location. An "*" (asterisk) is used to indicate the location of the first byte of the current instruction.
The I/O Control Instruction micro-codes provide for control, status and data exchange between the processor and its interface devices. Tape channels may be selected, tape motions initiated, and read or write commanded; the keyboard may be read or beeped; the CRT may be enabled or disabled ; the I/O interface transmission may be started or stopped, and data or control bytes written. With the CRT enabled, the data content of any memory page which has a section or level number of less than 5 may be displayed in four-line consecutive mode, eight-line consecutive mode, or eight-line interleaved mode. Several status checks are available for the processor to interrogate. Most normal I/O operations will use the I/O Supervisor, but special purpose routines may be constructed from the IOC instructions and there are several operations, like keyboard beep, that are not available from the lOS.
5. DPL-1 INSTRUCTION CLASSES:
The DPL-1 instruction set includes all hardware instructions and is divided into four general classes covering all types of operations required of a general purpose processor.
Class 0 Class 1 Class 2 Class 3
Jump and Conditional Exit Instructions Branch, Linkage-Control, and I/O Instructions Data-Transfer and Arithmetic Instructions Boolean and Compare Instructions
14
Class 0: Jump Instructions:
Jump instructions transfer control within a context to a location relative to the current instruction location. All Jump Instructions are conditional and depend on the result of a test of the contents of the accumulator. The test comparison, the test mask, the Jump direction and the jump increment are all specified in the instruction. The Jump increment is expressed in the instruction itself as the octal number of two-byte instructions to be jumped. However, the Batch Assembler uses a decimal byte count for the Jump increment. Test results are stored in the hardware condition register. For the TMJ and TMX instructions, an unconditional Jump or Exit, and the setting of the condition register to equal, can be effected by using a test mask of zero.
Class 1: Branch, Linkage-Control, and I/O Instructions:
Branch instructions transfer control outside a context to any section address. Branch instructions replace the current lAW with a new instruction address. Stack and Branch instructions introduce a new instruction address in a new lAW and preserve the contents of the previous lAW for return linkage. Direct Branch instructions may be conditioned by previous test or compare operations. The conditional instructions allow powerful data-dependent decisions to be made. The Exit and the Exit and Branch instructions are used to return from subroutines. They decrement the stack pointer and thus change program control to the next previous lAW.
Class 2: Data Transfer and Arithmetic Instructions:
This class of instructions includes the Load and Store operations that allow data to be moved between memory and the accumulator or index registers. These instructions use immediate, direct, or indexed addressing modes. When loading or storing using indexed addressing, the specified index register may be automatically incremented or decremented.
The arithmetic instructions in this class include Binary add and subtract operations on the accumulator or the index registers. Immediate, direct, or indexed addressing may be used. Automatic increment or decrement of index registers may be specified when using indexed addressing. All operations are available for use with the accumulator. Some operations may also be performed on index registers.
15
Class 3: Boolean and Compare Instructions:
The Boolean instructions in this class include immediate, direct or indexed addressing of And, Inclusive Or, and Exclusive Or operations. The immediate instructions allow for up to seven right circular shifts of the accumulator prior to operation with the literal.
The Compare instructions compare the contents of the accumulator with a location specified by immediate, direct or indexed addressing. Any index register may be compared with a literal. The comparison results are stored in the condition register and may be tested by any following conditional Branch instruction. In indexed addressing of both Boolean and Compare instructions, the specified index register may be automatically incremented or decremented.
PPL PUNCTUATION:
Rather than an implicit syntax, the DPL grammar provides an explicit syntax by use of punctuation. Four punctuation characters are used: the semi-colon, the comma, the colon and the period.
The semi-colon is used as an imperative terminator or a major field delimiter. It usually separates the instruction field from the operand field.
The comma is used as a minor field terminator. It separates multiple field instructions or operands.
The colon is used as a declarative terminator. It follows instruction labels, pseudo instructions and constant designators.
The period is used as a closing terminator and defines the end of the symbolic instruction.
LITERAL NOTATIONS:
Literal notations may be classified as explicit terms or as implicit terms. Explicit literals are self-defining because they include the specific value to be used. The four explicit literal forms are Character, Octal, Hexadecimal, and Decimal. They provide a means of specifying values or bit configurations without equating the values to symbols. The value of an explicit literal is assembled into an instruction. The value of a symbolic constant resides in memory and its address is assembled into an instruction.
16
Literals that are assigned a value by the DPL-3B Assembler use five forms of address constants in which AAA is a symbolic address. These are: ADCrAAA, ADL:AAA, ADPrAAA, IDPrAAA, and DDR:AAA. These address constants are used primarily to define the actual address of a symbolic reference. When the literal form ADR, IDR, or DDR is used in conjunction with an R#0 or an R#X, instruction, the DRL page value of AAA is assembled as the operand; either with no indexing tag, or with incrementing or decrementing tag, respectively. If the form ADL is used, the address location value within the page is assembled as the operand.
When the literal form ADC is used in conjunction with an R#0
instruction, the DPL page value, in increment form, is assembled as
the operand. If used in conjunction with an R#X instruction, the
symbolic address location within the page is assembled as the operand.
8. STANDARD C4 PROGRAM RECORD (Mini-Tape)
The Standard Mini-Tape Record is comprised of an 8-byte label, generated by the Mini-Write Software Function, followed by 128 bytes of data. The 8-byte label when read into (or written from) memory resides in Rage 00, locations OSOg thru OSZg. The first byte of the Record Header contains a sequence number. The sequence number is automatically checked by the Mini-Read Software Function to provide a method of automatically bypassing any "CIG" (Character in Gap). This sequence number may also be used to adjust search counters when utilizing the high-speed capability to locate multiple records by continuation. Byte-2 contains the control function. A value other than those specified below may be inserted by the user for specialized functions. Bytes 3 and 4 are not used by the Standard Mini-Read/Write, and can, therefore, contain any value as established by the user.
17
Bytes 5 through 8 of a program record contain the Segment ID and the Page Designator. Through usage of these bytes, an overlay record can easily be located and loaded into memory. Bytes 5 through 8 are not used in a data file.
8 bytes (Header)
128 Bytes (Data)
\
X
\
X
x
X
X
X
X
Not Used
Not Used
-:i^
Page Alloc,
Binary Sequence Number starting with 001 and .continually incremented with wraparound
(Not used in Data Files)
DPL Page of Record Program ID.
This ID is inserted by the 0-String Generation Phase from the "SEG" ID or the "OVL" ID. (Not used in data files.)
Control Byte.
375=End of Program Load
377=End of File Indicator
Segment Page Allocation
l=Relocatable 0=Non-Relocatable
0=Lower half of Page (OOOg thru 1778)
l=Upper half of Page (2008 thru 3778)
Figure 4. Standard Mini-Tape Record Layout.
18
9. SUBROUTINE RELOCATABILITY
A method has been provided to allow the user to write subroutines that may be executed within any Page without re-assembling the subroutine for that Page. By executing a SET Memory Control Command that sets the Relocatable Branch Control (RBC) Bit, any Branch, Stack and Branch or Exit and Branch Instruction given with Page 0 specified in the Branch Address will cause the Branch to occur within the current Section and Page of the program. If any Page other than 0 is specified in the Branch Address, the RBC-Bit is Inactive and a normal Branch function will occur.
10. TAPE I/O CHARACTER QUEUE
The SYSTEM 4 tape logic contains an 8-bit chararacter buffer that will hold a character for 512 usee, allowing this much time for other processing before the user must return to the I/O operation.
19
For DPL-1 instructions that use Immediate Addressing, the following forms may be used in symbolic coding to specify the literal value:
(K) Where K is a valid keyboard character
OCT:NNN Where NNN is a one-byte constant in OCTAL notation from jOjOjO to 377.
HEX:HH Where HH is a one-byte constant in HEXADECIMAL notation from 0JO to FF.
DEC:NNN Where NNN is a one-byte constant in DECIMAL notation from 000 to 255.
ADP:AAA Where AAA is an address constant for a PAGE in symbolic notation (without Auto Indexing).
IDP:AAA Where AAA is an address constant for a PAGE in symbolic notation (with Increment Auto. Indexing).
DDP:AAA Where AAA is an address constant for a PAGE in symbolic notation (with Decrement Auto. Indexing).
ADLrAAA Where AAA is an address constant for a LOCATION in symbolic notation.
ADC:AAA An address constant for labels, in symbolic notation (will generate page or location dependent on the Instruction form).
AAA+NNN Where AAA is an address constant for a
location in symbolic notation, and NNN is offset ± from that location.
20
SECTION III. INSTRUCTION DESCRIPTIONS
The instructions described in this section of the manual are presented in the same order as they appear on the Cogar System 4 Instruction Reference Card, and fall in the following four categories:
1. DPL-1 Instructions. These instructions perform all the data manipulation and control tasks allowed by the hardware.
2. lOS Commands. These instructions provide access to the standard software I/O routines, using the I/O Supervisor.
3. Pseudo Instructions. These instructions provide programmer control over the DPL-3B Assembler, and the resident monitors.
4. Constants. Byte constants or string constants may be generated using these notations.
21
CLASS JD: JUMP
TEST LITERAL AND JUMP
	OBJECT 1 1 SOURCE

	000JJJ5-LLL 1 1 TLJ, +NNN; Literal.]OjO0JJl-LLL II TLJ, -NN; Literal.

WHERE:
AND:
JJ is the jump count in 4 Bit Binary notation, indicating the number of 2-Byte instructions to be jumped.
LLL is an 8 Bit Literal.
WHERE: NN is the jump count in decimal notation, indicating the number of bytes to be jumped.
NOTE: This jump count must
always be an even decimal number (Max:30).
DESCRIPTION:
The Accumulator is compared to the byte of immediate data (literal), and the result is indicated in the condition register. Comparison is binary, and all codes are valid. If the resulting condition register is equal, a jump forward (+) or a jump backward (-) up to 15 two-byte instruction locations is performed. If however the resulting condition register is not equal (high or low), the next sequential instruction is executed. The character in the Accumulator is not changed. Once set, the condition register remains unchanged until modified by the next jump or compare instruction that reflects a different condition code.
NOTE: The condition register contains the true arithmetic condition (high or low) after an unsuccessful jump (unequal condition).

 [image: Picture #1]

 ACCUM > LITERAL ACCUM < LITERAL ACCUM = LITERAL
TIMING:
EXAMPLE;
3 Microseconds if the jump is not performed.
4 Microseconds if the jump is performed.
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5' P15-JD02: PI 5-J004: P15-JO06:
012-015. 013-016. 006-015. 004-017.
01-120. 01-130. 01-140. 01-150.
TLJ, TLJ, TLJ, TLJ,
+10; -10; +06; +04;
(A).
OCT:016. DEC:013. HEX:0F.
COMMENTS
JUMP IF ACCUM IS EQUAL
22
CLASS 0: JUMP
TEST MASK AND JUMP
	OBJECT 1 1 SOURCE

	001JJ0-MMM i i TMJ, +NN; LT-MASK. 001JJ1-MMM II TMJ. -NN; LT-MASK.

WHERE:
AND:
J J is the jump count in 4 Bit
Binary notation, indicating
the number of 2-Byte Instructions
to be jumped.
MMM is an 8 Bit Literal Mask.
WHERE: NN is the jump count in decimal notation, indicating the numter of bytes to be jumped.
NOTE: This jump count must
always be an even decimal number (Max:30).
DESCRIPTION:
The state of the Accumulator bits selected by a mask is used to set the condition code.
The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The bits of the mask are made to correspond one for one with the bits of the character in the Accumulator. A mask bit of one indicates that the corresponding Accumulator bit is to be tested. When the mask bit is zero, the corresponding ' Accumulator bit is ignored. When any of the Accumulator bits thus selected are zero, the Condition Register is made unequal. When the selected bits are all-one, the Condition Register is made equal. If the resulting Condition Register is equal, jump forward (+) or jump back (-) up to 15 two-byte instruction locations. On the resulting Condition Register not equal (high or low), execute the next sequential instruction. The character in the Accumulator is not changed. Once set, the Condition Register remains unchanged until modified by an instruction that reflects a different condition code. NOTE: The content of the Condition Register is unpredictable after an un
	successful jump (unequal condition).
	

	TIMING: 3 Microseconds if the jump is not performed. 4 Microseconds if the jump is performed.
	

	EXAMPLE:
	

	PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
	COMMENTS

	PI5-010: 050-016. 02-010. TMJ, +08; OCT:016. PI5-012: 051-050. 02-020. TMJ, -08; DEC:040. PI5-014: 076-377. 02-030 TMJ, +30; HEX:FF.
	JUMP IF MASK IS EQUAL

23
CLASS 0:
OBJECT
-LLL
TEST LITERAL AND EXIT
SOURCE
I
I TLX, 0jO0; Literal
WHERE: LLL is an 8 bit Literal.
DESCRIPTION:
The Accumulator is compared to the byte of immediate data (literal), and the result is indicated in the Condition Register. Comparison is binary, and all codes are valid. If the resulting Condition Register is equal, then a special form of exit, (conditional exit) is performed, which completes the return linkage established by the last executed stack and branch instruction. The stack pointer is decremented to the preceding stack level, which contains the address of the last stack and branch instruction executed. This address is then incremented by 2 bytes, which establishes the address of the instruction following the stack and branch instruction, and a new location counter value. This value is the new instruction address, where processing continues.
The exit function may return within a section or outside a section without any special consideration, since the stack contains the page and location of the return address.
NOTE: The Condition Register contains the true arithmetic condition (high or low) after an unsuccessful Jump (unequal condition).

 [image: Picture #2]

 ACCUM > LITERAL ACCUM < LITERAL ACCUM = LITERAL
TIMING: 3 Microseconds if the Jump is not performed. 4 Microseconds if the Jump is performed.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-J916 PI 5-020 PI 5-022 PI 5-024
000-017. 000-013. 000-016. 000-377.
02-090. 02-100. 02-110. 02-120.
TLX, 000; (C).
TLX, 000; OCT:013.
TLX, 000; DEC:014.
TLX, 000; HEX:FF.
COMMENTS
EXIT IF ACCUM IS EQUAL
24
CLASS 0:
TEST MASK AND EXIT
OBJECT
04jD-nMM
++
SOURCE
I I I HA, I I
; LT-MASK.
DESCRIPTION:
WHERE: MMM is an 8 bit Literal Mask.
The state of the Accumulator bits selected by a mask is used to set condition code.
the
The byte of Immediate Data (Literal-Mask) is used as an eight-bit mask. The bits of the mask are made to correspond one for one with the bits of the character in the Accumulator. A mask bit of one indicates that the corresponding Accumulator bit is to be tested. When the mask bit is zero, the corresponding Accumulator bit is ignored. When any of the Accumulator bits thus selected are zero, the Condition Register is made unequal. When the selected bits are all one, the Condition Register is made equal. If the resulting Condition Register is equal, then a special form of exit, (conditional exit) is performed, which completes the return linkage established by the last executed stack and branch instruction. The stack pointer is decremented to the preceding stack level, which contains the address of the last stack and branch instruction executed. This address is then incremented by 2 bytes, which establishes the address of the instruction following the stack and branch instruction, and a new location counter value. This value is the new instruction address, where processing continues.
The exit function may return within a section or outside a section without any special consideration, since the stack contains the page and location of the return address.
NOTE: The content of the Condition Register is unpredictable after an un
	successful Jump (unequal condition).
	

	TIMING:
	3 Microseconds if the Jump is not performed.
4 Microseconds if the Jump is performed.
	

	EXAMPLE:
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
	COMMENTS

	PI 5-026: PI 4-030: PI 5-032:
	040-010. 02-180. TMX, 000; OCT:010. 040-310. 02-190. TMX, 000; DEC:200. 040-240. 02-200. TMX, 000; HEX:A0.
	EXIT IF MASK IS EQUAL

25
CLASS 1: BRANCH
BRANCH UNCONDITIONAL
	OBJECT 1 1 SOURCE

	1 1 ; RRR+NNN. 1JZ)X-YXYJ0 1 1 BRU , Pnn; LLL. 1 1 ; *+NNN.
1 1

 [image: Picture #3]

 WHERE:
AND:
10X is the command, in which X is the page.
YXY is a 7 bit address.
WHERE: RRR is a symbolic address AND: NNN is a decimal byte displacement. AND: nn is a decimal page. AND: LLL is a decimal location AND: * is the location of the instruction itself.
DESCRIPTION:
The unconditional branch is performed by introducing a branch address as a new instruction address, regardless of the setting of the Condition Register.
The Branch Address may be represented in symbolic notation, as an absolute address; or as a relative address. The Branch Address may be any location within the current section. "OUT-OF-SECTION" branching is achieved by preceding the branch instruction with a SET MEMORY SECTION (SMS) instruction, or a SET memory SECTION & CONTROL (SSC) instruction. "WITHIN-A-PAGE" branching relocatability is achieved by preceding the branch instruction with a SET MEMORY CONTROL (SSC) instruction in which the RELOCATABLE BRANCH CONTROL (RBC) bit is set. (i.e.: C#l or C#3). The hardware condition register remains unchanged after execution of a branch function.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-J334: P15-J336: P15-JD4JD: PI 5-042: P15-JQ44:
1)?)5-J042. 1J05-J036. 107-00)0. 15JO-000. 106-144.
	03-030.
	BRU;
	INI.
	

	03-040.
	BRU;
	*+0.
	

	03-050.
	BRU,
	P15;
	000

	03-060.
	INI: SMS;
	S#0.
	

	03-070.
	BRU,
	P06;
	100

COMMENTS
WITHIN A SECTION
OUT OF A SECTION
26
CLASS 1: BRANCH
BRANCH ON EQUAL
	OBJECT 1 1 SOURCE

	1 ! ; RRR+NNN. IjOX-YXYl 1 1 BRE , Pnn; LLL. 1 1 ; *+NNN.

 [image: Picture #4]

 WHERE: IjOX is the command, in which
X is the page. AND: YXY is a 7 bit address.
WHERE: AND:
AND AND AND
RRR is a symbolic address. NNN is a decimal byte displacement.
nn is a decimal page. LLL is a decimal location. * is the location of the instruction itself.
DESCRIPTION:
The conditional branch instruction, branch on equal, is performed when the condition register, set by a previous compare or test instruction, is found to be equal. If this condition is not satisfied, the next sequential instruction is executed. The conditional branch is performed by introducing a branch address as a new instruction address.
(Refer to "BRU" for Basic Rules of Branching).
TIMING: 3 Microseconds if the branch is not performed. 4 Microseconds if the branch is performed.
EXAMPLE:
PI 5-046: P15-J350: PI 5-052: PI 5-054: PI 5-056:
105-051. 150-000. 340-200. 106-145. 150-010.
	SEQ. NO.
	LAB: VERB
	OPERANDS
	COMMENTS

	03-130
	BRE;
	IN2.
	WITHIN SECT

	03-140.
	IN2: SMS;
	S#0.
	OUT OF A

	03-150.
	CPA,
	R#0; OCT:200.
	SECT. IF

	03-160.
	BRE,
	P06; 100.
	EQUAL-ELSE

	03-170.
	SMS;
	S#l.
	RESET SECT.

27
CLASS 1: BRANCH
BRANCH ON HIGH
	OBJECT II SOURCE

	1 1 ; RRR+NNN. 11X-YXYJ0 M BRH , Pnn; LLL. M ; *+NNN.

WHERE; AND:
IIX is the which X is YXY is a 7
command, in the page, bit address.
WHERE: AND:
AND AND AND
RRR is a Symbolic address. NNN is a decimal byte displacement.
nn is a decimal page. LLL is a decimal location. * is the location of the instruction itself.
DESCRIPTION:
The conditional branch instruction, branch on high, is performed when the condition register, which has been set by a previous compare or test instruction, is found to be high. If this condition is not satisfied, the next sequential instruction is executed.
(Refer to "BRU" for Basic Rules of Branching).
TIMING: 3 Microseconds if the branch is not performed. 4 Microseconds if the branch is performed.
EXAMPLE:
P15-JO6J0: PI 5-062: P15-J064: PI 5-066: P15-07JD:
115-062. 150-000. 340-200. 116-144. 150-010.
	SEQ. NO.
	LAB: VERB
	OPERANDS
	COMMENTS

	04-030.
	BRH;
	*+02.
	WITHIN SECT

	04-040.
	IN3: SMS;
	S#0.
	OUT OF A

	04-050.
	CPA,
	R#0; OCT:200.
	SECT. IF

	04-060.
	BRH,
	P06; 100.
	HIGH-ELSE

	04-070.
	SMS;
	S#l.
	RESET SECT.

28
CLASS 1: BRANCH
BRANCH ON LOW
	OBJECT 1 1 SOURCE

	i i ; RRR+NNN. IIX-YXYI 1 1 BRL , Pnn; LLL. 1 1 ; *+NNN.
1 1

WHERE: 11X is the command, in which
X is the page. AND: YXY is a 7 bit address.
WHERE: RRR is a Symbolic address.
AND: NNN is a decimal byte displacement.
AND: nn is a decimal page.
AND: LLL is a decimal location.
AND: * is the location of the instruction itself.
DESCRIPTION:
The conditional branch instruction, branch on low, is performed when the condition register, set by a previous compare or test instruction, is found to be low. If this condition is not satisfied, the next sequential instruction is executed. The conditional branch is performed by introducing a branch address as a new instruction address.
(Refer to "BRU" for Basic Rules of Branching)
TIMING: 3 Microseconds if the branch is not performed.
	
	4 Micros
	econds i
	f the branch is performed.
	

	EXAMPLE:
	
	
	
	
	

	PPP-LLL:
	MP1-MP2
	MPS
	-MP4.
	E SEQ. NO. LAB: VERB OPERANDS
	COMMENTS

	PI 5-072: PI 5-074: PI 5-076: PI 5-100: P15-102:
	115-075. 150-000. 340-200. 116-145. 150-010.
	
	
	04-130. BRL; IN4. 04-140. IN4: SMS; S#0. 04-150. CPA, R#0; OCT:200. 04-160. BRL, P06; 100. 04-170. SMS; S#l.
	WITHIN SECT OUT OF A SECT. IF LOW-ELSE RESET SECT.

29
CLASS 1: BRANCH
STACK AND BRANCH UNCONDITIONAL
	OBJECT 1 1 SOURCE

	1 ; RRR+NNN. 12X-YXYja SBU , Pnn; LLL.
; *+NNN.

 [image: Picture #5]

 WHERE: 12X is the command, in
which X is the page, AND: YXY is a 7 bit address.
WHERE:
AND:
AND:
AND:
AND:
RRR is a symbolic address. NNN is a decimal byte displacement, nn is a decimal page. LLL is a decimal location. * is the location of the instruction itself.
The Stack and Branch Unconditional Instruction is performed regardless of the setting of the condition register.
DESCRIPTION:
The stack and branch instructions are in contrast with the branch instructions, in that the stack and branch instructions preserve the current value of the location counter which is present in the current stack; this is performed by incrementing the stack pointer to the next stack level and creating a new location counter value containing the branch address as a new instruction address, within that stack. Thus, the return linkage between sub-routines is established. For the stack and branch function there are sixteen levels of stacks that the stack pointer can address, of which fifteen levels of stacks may temporarily preserve the return linkages for fifteen levels of stack and branching.
TIMING: 3 Microseconds
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-1J34 P15-1J36 P15-11J3 PI 5-112 PI 5-114
125-112. 125-112. 127-J0JO0. 150-jOjaj3. 126-144.
	05-JD40.
	SBU;
	INS.

	05-J050.
	SBU;
	*+j54.

	155-06)?).
	SBU,
	P15; J0

	J05~)D7)D.
	IN5: SMS;
	S#J[).

	JO5-08)D.
	SBU,
	P)D6; 1

COMMENTS
WITHIN A SECTION
OUT OF A SECTION
30
CLASS 1: BRANCH
STACK AND BRANCH EQUAL
	OBJECT 1 1 SOURCE

	i i ; RRR+NNN. 12X-YXY1 1 1 SBE , Pnn; LLL. 1 1 ; *+NNN.
1 1

WHERE: 12X is the command, in which
X is the page. AND: YXY is a 7 bit address.
WHERE: AND:
AND AND AND
RRR is a symbolic address. NNN is a decimal byte displacement.
nn is a decimal page. LLL is a decimal location. * is the location of the instruction itself.
DESCRIPTION:
The conditional stack and branch, stack and branch equal, is performed when the condition register, set by a previous compare or test instruction, is found to be equal. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SBU" for Basic Rules of Stack and Branching).
TIMING: 3 Microseconds if the stack and branch is not performed. 4 Microseconds if the stack and branch is performed.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB:
P15-116: P15-12JZ): P15-122: PI 5-124:
125-121. 15j0-0)0)2). 34J0-2J0J8. 126-145.
PI 5-126: 15jD-01jei.
J05JSI5J05J05
14jO. 15ja. 16J9. 17J3.
jO5-18j0.
INS:
	VERB
	OPERANDS
	COMMENTS

	SBE; SMS; CPA, SBE, SMS;
	*+jD2.
S#JD.
R#jO; 0CT:2W.
pj06; ^m.
S#l.
	WITHIN SECT OUT OF A SECTION IF EQUAL-ELSE RESET SECT.

31
CLASS 1: BRANCH
STACK AND BRANCH ON HIGH
	OBJECT 1 1 SOURCE

	1 1 ; RRR+NNN. ISX-YXYjZ) II SBH , Pnn; LLL. 1 1 ; *+NNN.

	WHERE:
	13X is the command, in
	WHERE:

	
	which X is the page.
	AND:

	AND:
	YXY is a 7 bit address.
	AND: AND: AND:

RRR is a symbolic address. NNN is a decimal byte displacement.
nn is a decimal page. LLL is a decimal location. * is the location of the instruction itself.
DESCRIPTION:
The conditional stack and branch, stack and branch on high, is performed when the condition register, set by a previous compare or test instruction, is found to be high. If the condition is not satisfied the next sequential instruction is executed.
(Refer to "SBU" for Basic Rules of Stack and Branching)
TIMING: 3 Microseconds if the stack and branch is not performed. 4 Microseconds if the stack and branch is performed.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E
P15-13)3: P15-132: P15-134: PI 5-136: P15-14JD:
135-132. 15jD-jZ))30. 34)a-2jOja. 136-144. 15)D-JD1JD.
	SEQ. NO.
	LAB:
	VERB
	OPERANDS
	COMMENTS

	J06-jO4ja.
	
	SBH;
	IN7.
	WITHIN SECT

	j95-05jO.
	IN7:
	SMS;
	S#jO.
	OUT OF A

	J06-JD6JD.
	
	CPA,
	R#^; OCT:2)0)3.
	SECTION IF

	jZ)6-JJ)7)D.
	
	SBH,
	P^6; 1)90.
	HIGH-ELSE

	06-jD8jO.
	
	SMS;
	S#l.
	RESET-SECT.

32
CLASS 1: BRANCH
STACK AND BRANCH ON LOW
OBJECT
13X-YXY1
SOURCE
SBL
. DDD_lMMM
, PnnT LLL. ; *+NNN.

 [image: Picture #6]

 WHERE: 13X is the command, in which
X is the page. AND: YXY is a 7 bit address.
	WHERE:
	RRR is a symbolic address.

	AND:
	NNN is a decimal byte dis

	
	placement.

	AND:
	nn is a decimal page.

	AND:
	LLL is a decimal location.

	AND:
	* is the location of the in

	
	struction itself.

DESCRIPTION:
The conditional stack and branch, stack and branch on low, is performed when the condition register, set by a previous compare or test instruction, is found to be low. If the condition is not satisfied the next sequential instruction is executed.
(Refer to "SBU" for Basic Rules of Stack and Branching)
TIMING: 3 Microseconds if the stack and branch is not performed. 4 Microseconds if the stack and branch is performed.
EXAMPLE:
PI 5-142: P15-144: P15-146: P15-150: P15-152:
135-145. 150-/300. 340-200. 136-145. 150-010.
	SEQ. NO.
	LAB:
	VERB
	OPERANDS
	COMMENTS

	06-140.
	
	SBL;
	INS.
	WITHIN SECT

	06-150.
	INS:
	SMS;
	S#0.
	OUT OF A

	06-160.
	
	CPA,
	R#0; OCT:200.
	SECTION IF

	06-170.
	
	SBL,
	P06; 100.
	LOW-ELSE

	06-180.
	
	SMS;
	S#l.
	RESET SECT.

33
CLASS 1: BRANCH
EXIT AND BRANCH
	OBJECT 1 1 SOURCE

	' ' ; RRR+NNN. 16X-YXYJ0 ' ' EXB , Pnn; LLL.] j ; *+NNN.
1 1

	WHERE: 16X is the command, in
	WHERE

	which X is the page.
	AND:

	AND: YXY is a 7 bit address.
	AND:

	
	AND:

	DESCRIPTION:
	

RRR is a symbolic address.
NNN is a decimal byte displacement.
nn is a decimal page.
LLL is a decimal location.
The exit and branch instruction combines the functions of the exit instruction and the branch unconditional instruction. This form of exit does not perform the return linkage established by the preceding stack and branch instruction. The stack pointer is decremented to the preceding stack level. The address specified in the operand is then used to establish a new location counter value within that stack. This value is the new instruction address within the current section, where processing continues.
TIMING: 4 Microseconds
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-154: 165-156. PI 5-156: 15JD-J0JOJD. P15-160: 166-144.
J07-JJI5J3. J07-06J3. j37-07j3.
EXB; *+jD2. SMS; S#jO. EXB, Pj06;
COMMENTS
WITHIN SECT. OUT OF A SECTION
34
CLASS 1: BRANCH
EXIT UNCONDITIONAL
OBJECT
TT
+4
SOURCE
"X Afh (hfAffi
I I
I I
I I I I
EXU; 000.
.WHERE: AND:
140 is the command,
000 is the 8-Bit Operand
DESCRIPTION:
This form of exit, exit unconditional, performs the return linkage established by the last executed stack and branch instruction. The stack pointer is decremented to the preceding stack level, which contains the address of the last stack and branch instruction executed. This address is then incremented by 2 bytes which establishes the address of the instruction following the stack and .branch instruction, and a new location counter value. This value is the new instruction address, where processing continues.
The exit function may return within a section or outside a section without any special consideration, since the stack contains the page and location of the return address.
The condition register is not changed by this instruction.
	TIMING:
	4 Microseco
	ids.
	
	
	
	
	

	EXAMPLE:
	
	
	
	
	
	
	
	

	PPP-LLL:
	MP1-MP2
	MPS
	-MP4.
	E SEQ. NO.
	LAB:
	VERB
	OPERANDS
	COMMENTS

	P15-162:
	150-000.
	
	
	07-130.
	
	SMS;
	S#0.
	LINK OUT OF

	P15-164:
	126-144.
	
	
	07-140.
*07-150.
07-160.
	
	SBU; ORG:
	OUT. P06, 100.
	A SECTION

	P06-144:
	213-006.
	
	
	07-170.
	OUT:
	LDA,
	I#3; P01.
	

	P06-146:
	140-000.
	
	
	07-180.
	
	EXU;
	000.
	RETURN

35
CLASS 1: BRANCH
SET MEMORY SECTION
OBJECT
1510-jOXjO
SOURCE
SMS; S#X.
WHERE: X is the section number (0-7),
DESCRIPTION:
The set section instruction provides a means of transferring control from the current section to an outside section. A branch function (Branch, Stack & Branch or Exit & Branch) preceded by an SMS command will transfer control to the address defined by the branch address and the section specified in the set section operand.
Note that once the SMS instruction has been executed, transfer to that section will only be made when an unconditional branch function is executed or a conditional branch function that is found to be true.
The condition register is not changed by this instruction.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-)DjO0: 15jO-0j50. P15-JD02: Ij02-)0)5)D.
)38-j07j0. J08-j08j0.
SMS; S#jO.
BRu, pj02; mm.
COMMENTS
SET SECTION jO BRANCH PAGE 2
36
CLASS 1
SET MEMORY CONTROL
OBJECT
151-YjDja
SOURCE
SMC; C#Y,

 [image: Picture #7]

 WHERE: Y = jO Resets U & V control bits,
Y = 1 Sets V Bit, Resets U Bit,
Y = 2 Sets U Bit, Resets V Bit,
Y = 3 Sets U and V Bits.
DESCRIPTION:
When the U bit is set to jO, the address of the index registers is memory location 1-7 and direct addressing is only available in page 0 of section jO. When the U bit is set to 1, the effective index register address is location 1-7 of the section where the indexed instruction is being executed. Likewise the effective direct address is page J0 of the section where the direct address instruction is being executed.
When the V bit is set to 1 any branch, stack & branch or exit & branch instructions given with page J0 specified in the branch address will cause the branch to occur within the currrent section and page of the program. If any page other than 0 is specified in the branch address, the V bit control is inactive and a normal branch will occur. For example, assume that the V bit is set and a branch instruction located in page 5 specifies a branch to page 0 location AAA. The resulting branch will be, to page 5 location AAA. If the branch address specified was page 6 location BBB, then the resulting branch will be to page 6 location BBB. If a program resides in any page other than page 0 and a branch to page 0 is desired, the V bit must be inactive.
An exit or exit and branch operation will restore the control bits to the value associated with that stack level. A stack and branch operation will not affect the control bits.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5-004: 151-300. PI 5-006: 230-200. PI 5-010: 100-100.
08-140.
08-150.
08-160.
*O8-170.
SMC; C#3. STA, R#0; 128. BRU, P00; 064.
COMMENTS
SET U,V CONTROL STORE PAGE 10 BRANCH TO PAGE 15-100/OCT
37
CLASS 1
OBJECT
152-YX0
SET MEMORY SECTION & CONTROL
SOURCE
SSC, S#X; C#Y

 [image: Picture #8]

 DESCRIPTION:
WHERE: X is the section designation
Y is the control bit designation
This instruction performs both the set memory section operation of SMS and set memory control operation of SMC.
TIMING:
EXAMPLE:
4 Microseconds.
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-JD12: 152-JD30. J09-)93J3. SSC, S#3; C#)D.
J39-J04ja. P15-J314: 152-36J0 09-JD50. SSC, S#6; C#3.
*J59-JD60.
COMMENTS
SET SECT. 3 & RESET U & V-BIT SET SECT. 6 & SET U & V-BITS
38
CLASS 1
SET ARITHMETIC CONDITION
OBJECT
SOURCE
153-000
SAC;
SAC
DESCRIPTION:
This instruction will force the arithmetical condition registers of the processor to an equal, high or low condition, dependent upon the state of bits 4 and 5 of the accumulator at the time of the SAC instruction.
The condition forced by the SAC instruction for a given state of bits 4 and 5 of the ACC is given below.
ACCUMULATOR BITS 7 6 5 4 3 2 1 JO
CONDITION FORCED
	
	1 0
	Equal
	
	

	
	0 1
	High
	
	

	
	0 0
	Low
	
	

	
	1 1
	Equal
	
	

	TIMING:
	4 Microseconds.
	
	
	

	EXAMPLE:
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4.
	E SEQ. NO. LAB: VERB
	OPERANDS
	COMMENTS

	PI 5-016: PI 5-020:
	200-020. 153-000.
	09-120. LDA, 09-130. SAC;
	R#0; OCT:020. 000.
	LOAD COND. CODE SET COND. HIGH

39
•DPL-l
CLASS 1
LOAD SENSE SWITCHES
OBJECT
154
SOURCE
LSW; 0JOJO.
DESCRIPTION:
The load sense switch instruction will load the state of 8 toggle switches (located in the switch well under the CRT screen) to the accumulator. Switch 0 is loaded to ACC Bit 0, switch 1 to ACC Bit 1, etc.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P15-)922: P15-JD24:
154044-004.
09-190. 09-200.
LSW; TMJ,
+04; OCT:004.
LOAD S.S. TEST SW. #2
40
CLASS 1
LOAD PROCESSOR STATUS
OBJECT
155
SOURCE
LPS; 0013.
DESCRIPTION
This instruction loads a processor status word into the accumulator. The following shows the accumulator bits and their respective meaning.
ACCUMULATOR
7 6
Program Interrupt Switch —' (This bit is set whenever the program interrupt switch is in the interrupt position. It is reset whenever the interrupt switch is in the neutral position. Therefore, this switch could also be used as a sense switch.)
STACK LEVEL

 [image: Picture #9]

 Stack Pointer Address (Level 0 to 15) —•Arithmetic Condition Register (See SAC Inst) Interrupt Overflow (See EPI Instruction)
0
4
PA5E 0 LOC. 40 T^I^INQ; 4 microseconds EXAMPLE:
0 A C ; G
^E
I'O 7 1
710
42 44 46 50 Current Stack —
52
54 J
56 60
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P15-J026: P15-J03J0: P15-J032: P15-J034: P15-J036: P15-J04p: P15-J042: P15-JD44: P15-J046: P15-J05JO: P15-J052:
1 55-jOjOjO 3JD7-J036 36jO-jO4j0 23j0-j0j01 261-J0J02 211 -J0j02 3J0J3-376
211
3JD6-377 23j0-je)ja3
*lj0-/)5j0. CALCULATE ADD.OF LAST STACK & BRANCH INST.
Ij0-J06j0. LPS; jOjOjO. CALCULATE ADDR.
Ij0-J07j0. SAN, S#7; 0CT:j036. OF CURRENT
l/)-j08jO. IRA, R#jO; OCT:/)4jO. STACK (LOC.)
Ij0-j09j0. STA, R#jO; R#l. SAVE IN R#l.
IjO-ljOjO. SUX, R#l; OCT:jOj02. PREVIOUS STK LV
IjO-lljO. LDA, I#l; PjOjD. RETRIEVE LOC.
Ij0-12j0. ANA, R#J0; 0CT:376. FROM PRIOR STK
1J0-13J0. STA, R#J0; R#2. REMOVE LO BIT
10-14ja. LDA, R#l; PjOjO. RETRIEVE PAGE
1J0-15J3. SAN, S#6; 0CT:377. OCTAL FORM-SHFT
ljg-160. STA, R#jO; R#3. FOR DPL PG R-FM
41
CLASS 1
DISABLE PROCESSOR INTERRUPT
OBJECT
156-0jOjO
SOURCE
DPI;
DESCRIPTION
The disable processor interrupt instruction will branch that occurs upon receipt of an interrupt, interrupt.
inhibit the auto stack and It does not disable the
If the Disable Processor Interrupt (DPI) was executed prior to the Enable Processor Interrupt (EPI) Instruction, and the interrupt is activated, the interrupt will occur only immediately following the execution of an EPI instruction.
TIMING: 4 Microseconds.
42
.DPL-1
CLASS 1
ENABLE PROCESSOR INTERRUPT
OBJECT
156
SOURCE
EPI;

 [image: Picture #10]

 DESCRIPTION:
Within the SYSTEM 4 hardware structure, there are two mechanisms which provide for the interrupting of normal instruction processing.
One is designed primarily for use by the programmer. The Interrupt Switch is located in the Switch Well under the CRT screen and can be activated by pushing the PROGRAM LOAD Toggle Switch in the opposite direction of the PROGRAM LOAD. Another interrupt cannot be generated until the switch is moved to the off position and then on again. Also an external interrupt will not be effective unless the interrupt switch is off. Two levels of interrupts may be preserved by the interrupt logic prior to the execution of an Enable Processor Interrupt (EPI) Instruction. Additional interrupts will cause the interrupt overflow indicator to be set (see 'LPS' Instruction).
An external interrupt input is provided for use by external devices, activated by a pulse from an external device.
This is
For each interrupt (external or program) an EPI Instruction must be previously executed. After execution, that level of interrupt will be reset. If the interrupt is activated after the execution of the Enable Processor Interrupt (EPI) Instruction, an automatic Stack and Branch operation to Section 0, Page 3, Location 000 will occur. Therefore, the user program to process the interrupt condition must be initialized in Page 03-000. The return to the point of interrupt can be effected by an Exit (EXU) instruction to that Stack level. (Refer to Stack and Branch Unconditional).
NOTE: If the Disable Processor Interrupt (DPI) was not executed prior to the Enable Processor Interrupt (EPI) Instruction, and the interrupt is activated, the interrupt will occur after the execution of the current instruction.
INTERRUPT LOCK OUT
An interrupt will not occur during any of the following conditions, they do not inhibit the interrupt, they simply delay the auto Stack until the condition is completed. These conditions are:
1) Tape movement (Read/Write/Rewind/Search)
However, and Branch
43
EPI (cont'd.)
INTERRUPT LOCK OUT (cont'd.)
2) If the keyboard is made ready (i.e. by depressing a key and a Read from the keyboard has not been executed). In this case, the interrupt will occur immediately following the keyboard Read Instruction.
3) During a Set Section or Set Section and Control operation.
4) Interrupt Disable has been set (see Disable Processor Interrupt (DPI) Instruction).
TIMING: 4 Microseconds.
44
CLASS 1
CLEAR PROCESSOR INTERRUPT
OBJECT
156-m2
SOURCE
CPI;

 [image: Picture #11]

 DESCRIPTION:
An interrupt overflow condition occurs when more than two interrupts have been activated before the execution of an Enable Processor Interrupt (EPI) instruction. This condition may be tested through the use of the Load Processor Status (LPS) Instruction.
By execution of a Clear Interrupt instruction, the interrupt overflow indicator will be cleared.
TIMING: 4 Microseconds.
45
CLASS 2: TRANSFER
LOAD ACCUMULATOR
	OBJECT 1 1 SOURCE

	2JD0-LLL 1 1 LDA, R#0; Literal. 21J0-YXX II LDA, R#jO; AAA+NNN. 211-YXZjOjO 1 1 LDA, R#X; PPP. 21I-YXZ1J0 1 1 LDA, I#X; PPP. 21I-YXZ11 1 1 LDA, D#X; PPP. 2M-nim 1 LDA, R#X; AAA+NNN.

 [image: Picture #12]

 WHERE:
AND:
AND: AND:
AND:
AND: AND:
WHERE:
AND
2J0J3 is an immediate address
command.
LLL is any form of literal
notation.
210 is a direct address command. AND YXX is an 8-bit location address within a level zero page. AND
211 is an indexed address AND command.
I is any index (1-7). AND
YXZ is a 6-bit base page
address. AND
AND
R#0 is the immediate or direct indicator. AAA is a direct address page within level #0. NNN is a decimal byte displacement.
X is any register (1-7). PPP is a decimal page notation.
I-Increment register by 001 after execution. D-Decrement register by 001 after execution. R-Register value unchanged after execution.
DESCRIPTION:
Load the Accumulator with the value specified by the immediate, the direct or the indexed address. The immediate form of this instruction provides the means of specifying machine values or bit congigurations as part of the instruction. Literal terms may be used to specify such program elements as immediate data, masks, and addresses. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory.
The condition register value remains unchanged after execution of this instruction.
TIMING: EXAMPLE
4 Microseconds when literal form is used. 6 Microseconds when literal form is not used.
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5-054: 200-200. PI 5-056: 200-066. PI 5-060: 200-064.
PI 5-062: 210-200. PI 5-064: 210-007.
PI 5-066: 213-040. PI5-070: 213-042. PI 5-072: 213-043.
11-030. 11-040.
050.
060.
070.
080.
11
*11
11
11
*11-090. 11-100. AAA: 11-110. 11-120.
LDA, LDA, LDA,
LDA, LDA,
LDA, LDA, LDA,
R#0; R#0; R#0;
R#0; R#0;
R#3; I#3; D#3;
OCT:200. ADL:AAA. ADP:AAA.
128.
R#7.
P08. P08. P08.
COMMENTS
IMMEDIATE ADDRESSING
DIRECT ADDRESSING
INDEXED ADDRESSING
46
.DPL-1
CLASS 2: DATA TRANSFER LOAD INDEX REGISTER
OBJECT
20I-LLL
SOURCE
LDX, R#X; Literal.

 [image: Picture #13]

 WHERE: I is any register (1-7).
AND: LLL is any form of literal notation.
DESCRIPTION:
Load the specified index register with the value indicated by the immediate address. The primary use of this instruction is to establish the address displacement, within a page, for the indexed addressing instructions. Any form of literal notation may be used.
The condition register value remains unchanged after execution of this instruction.
	TIMING:
	4 Microseco
	ads
	
	
	
	

	EXAMPLE:
	
	
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3
	-MP4.
	E SEQ. NO.
	LAB:
	VERB
	OPERANDS

	P15-JD74:
	201-JD17.
	
	11-180.
	
	LDX,
	R#l; OCT:017

	P15-JD76:
	2JD2-017.
	
	11-190.
	
	LDX,
	R#2; DEC:015

	P15-^m^.
	2)2)3-017.
	
	11-200.
	
	LDX,
	R#3; HEX:0F.

	PI 5-102:
	2m-017.
	
	12-010.
	
	LDX,
	R#4; (C).

	P15-1JZ)4:
	205-110.
	
	12-020.
	
	LDX,
	R#5; ADL:BBB

	P15-1J36:
	206-102.
	
	12-030.
	
	LDX,
	R#6; BBB-06.

	P15-njQ:
	207-066.
	
	12-040.
	BBB:
	LDX,
	R#7; I DP:BBB

COMMENTS
47
CLASS 2.
LOAD INSTRUCTION ADDRESS
	OBJECT 1 1 SOURCE

	22l-m 1 1 LIA, R#X; jQjO)0. 22I-LLL 1 1 LIA, R#X; Literal.
1 1

WHERE: I is any register (1-7)
AND: LLL is any form of Literal Notation.
DESCRIPTION:
This instruction will transfer the 8 least significant bits of the current instruction address to the specified index register. If the instruction literal is 0)00, then the section and page of the current instruction address is transferred to the accumulator. If the literal is not 000, then the literal is transferred to the accumulator.
TIMING: 4 Microseconds EXAMPLE:
	PPP-LLL:
	MP1-MP2-MP3-MP4.
	E SEQ. NO.
	LAB: VERB
	OPERANDS
	COMMENTS

	
	
	*12-lj0)3.
	LOAD INSTRUCTION ADDRESS
	(MAIN ROUTINE)

	
	^
	*12-n)3.
	MONITOR, FIXED, NON-RELOCATABLE.

	
	
	*12-12)3.
	
	
	

	P15-112:
	151-2P)3.
	12-13)3.
	SMC;
	C#2.
	SET CONTROL

	P15-114:
	2)31-123.
	12-140.
	MTR: LDX,
	R#l; MTR+)37.
	SET POINTER

	PI 5-116:
	231-)364.
	12-15)3. *12-16J0.
	STA,
	R#l; MTR.
	(ACCUM CONTAINS PAGE NUMBER)

	PI 5-12)3:
	21jO-j3)D6.
	12-17)3.
	LDA,
	R#)3; R#6.
	DATA PAGE

	PI 5-122:
	237-mfli'
	12-18)3.
	STA,
	R#7; P)3j0.
	INSERT PAGE

	P15-124:
	14)D-)D)5J0.
	12-19J0. *12-20J0.
	EXU;
	J0)3j0.
	

	
	
	*13-)31j0.
	RELOCATABLE SUBROUTINE.
	

	
	
	13-)320.
	ORG:
	PI4, J0J0)3.
	ACM.CONTAINS PG

	P16-J9j0j0:
	227-f)m.
	13-)33)3.
	SUB: LIA,
	R#7; nm.
	R#(~ADDR + 1

	PI 6-0)32:
	247-)3)36.
	13-)34)3.
	ADX,
	R#7; OCT:0)36.
	ADJUST

	P16-)304:
	125-114.
	13-)35)3.
	SBU;
	MTR.
	

	P16-)DjD6:
	354-j3)32.
	13-)36)3. *13-)37)3.
	SBl: CPA,
	I#4; P00.
	PAGE CHANGED AT OBJECT-TIME

48
CLASS 2: DATA TRANSFER STORE ACCUMULATOR
	OBJECT ^
	1 SOURCE 1

	23J0-YXX
	1 STA,
	R#0; AAA+NNN.

	23I-YXZ00
	i STA,
	R#X; PPP.

	23I-YXZ110
	1 STA,
	I#X; PPP.

	23I-YXZ11
	1 STA,
	D#X; PPP.

	23I-YXZ00
	1 STA,
	RJX; AAA+NNN.

WHERE: AND:
AND AND AND
230 is a direct address command. YXX is an 8-bit location address within a level zero page.
231 is an indexed address command. I is any index (1-7).
YXZ is a 6 bit base page address.
WHERE:
AND
AND AND
AND
AND
AND
AAA is a direct address page within level #J0. NNN is a decimal byte displacement.
X is any register (1-7). PPP is a decimal page notation.
I-Increment register by jOjOl after execution. D-Decrement register by JO01 after execution. R-Register value unchanged after execution.
DESCRIPTION: .
Store the contents of the Accumulator into the address specified by the direct or indexed address contained in the instruction operand. The direct form of this instruction allows the user to directly address any location within a level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory, thus performing the function of indexed addressing.
The condition register value remains unchanged after execution of this instruction.
TIMING: 6 Microseconds.
	EXAMPLE:
	
	
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4.
	E SEQ. NO.
	LAB:
	VERB
	OPERANDS
	COMMENTS

	P16-J01JD:
	23je)-144.
	13-14i).
	
	STA,
	R#J3; 1J0J3.
	DIRECT

	P16-J012:
	23J3-JDJ37.
	13-15J0. *13-16JD.
	
	STA,
	R#J3; R#7.
	ADDRESSING

	P16-jai4:
	231-197)3.
	13-17ja.
	
	STA,
	R#l; OCC.
	INDEXED

	P16-016:
	231-J037.
	13-18JD.
	
	STA,
	D#l; P)D7.
	ADDRESSING

	P16-)32JD:
	231-JD36.
	13-190.
	CCC:
	STA,
	I#l; PjD7.
	

49
CLASS 2: ORDINARY ARITHMETIC ADD TO ACCUMULATOR
	OBJECT
	
	SOURCE

	240-LLL
	1 I ADA,
	R#0; Literal.

	250-YXX
	1 1 ADA,
	R#0; AAA+NNN.

	25I-YXZ00
	1 1 ADA,
	R#X; PPP.

	25I-YXZ10
	1 1 ADA,
	I#X; PPP.

	25I-YXZ11
	1 1 ADA,
	D#X; PPP.

WHERE:
AND;
AND: AND:
AND AND AND
240 is an immediate address
command.
LLL is any form of literal
notation.
250 is a direct address command. YXX is an 8-bit location address within a level zero page.
251 is an indexed address command, I is any index (1-7).
YXZ is a 6-bit base page address.
DESCRIPTION:
WHERE: R#0 is the immediate
or direct indicator. AND: AAA is a direct address
page within level #0. AND: NNN is a decimal byte
displacement. AND: X is any register (1-7). AND: PPP is a decimal page
notation. AND: I-Increment register by
001 after execution. AND: D-Decrement register by
001 after execution. AND: R-Register value remains
unchanged after execution.
Binary add to the Accumulator the value specified by the immediate, the direct, of the indexed address. The immediate form of this instruction provides the means of specifying machine values or bit configurations as part of the instruction. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory, thus performing the function of indexed addressing. In the event of an overflow condition, the overflow character is lost.
The condition register value remains unchanged after execution of this instruction.
TIMING:
EXAMPLE:
4 Microseconds when literal form is used. 6 Microseconds when literal form is not used.
PPP-LLL. MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P16-022: PI 6-024: PI 6-026: P16-030: P16-032:
240-004. 250-12^7. 253-004. 253-072. 253-007.
14-060. 14-070. 14-080. 14-090. 14-100.
DDD:
ADA, ADA, ADA, ADA, ADA,
R#0; (1).
R#0; R#7.
R#3; P01.
I#3; DDD.
D#3; P01.
COMMENTS
ADD IMMEDIATE ADD DIRECT ADD INDEXED
50
CLASS 2: ORDINARY ARITHMETIC
ADD TO INDEX REGISTER
OBJECT
24I-LLL
SOURCE
ADX, R#X; Literal.

 [image: Picture #14]

 WHERE: I is any register (1-7)
AND: LLL is any form of literal notation.
DESCRIPTION:
Binary add to the index register specified, the value indicated by the immediate address. In the event of any overflow condition, the overflow character is lost.
The condition register value remains unchanged after execution of this instruction.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P16-J034: 241-jt)j04. P16-036: 242-j3)a4. P16-)Z)4)D: 243-372.
14-16)0. EEE: ADX, R#l; (1). 14-17)3. ADX. R#2; OCT:jOj04.
14-180. ADX, R#3; HEX:FA.
COMMENTS
BINARY ADD TO INDEX REGISTER
51
•DPL-1
CLASS 2: ORDINARY ARITHMETIC
SUBTRACT FROM ACCUMULATOR
	OBJECT 1 1 SOURCE

	260-LLL ' ' SUA, R#]0; Literal. 27)5-YXX ' ' SUA, R#jO; AAA+NNN. 27I-YXZJO0 ! ' SUA, R#X; PPP. 27I-YXZ1J5 I SUA, I#X; PPP. 27I-YXZ11 SUA, D#X; PPP.

WHERE:
AND:
AND: AND:
AND AND AND
26]D is an immediate address
command.
LLL is any form of literal
notation.
27)9 is a direct address command.
YXX is an 8-bit location address
within a level zero page.
271 is an indexed address command.
I is any index (1-7)
YXZ is a 6-bit base page address.
WHERE: R#0 is the immediate or direct indicator.
AND: AAA is a direct address page within level #J0.
AND: NNN is a decimal byte displacement.
AND: X is any register (1-7)
AND: PPP is a decimal page notation.
AND: I-Increment register by JO01 after execution.
AND: D-Decrement register by J301 after execution.
AND: R-Register value unchanged after execution.
DESCRIPTION:
Binary subtract from the Accumulator, the value specified by direct or the indexed address. The immediate form of the in the means of specifying machine values or bit configuration struction. The direct form of this instruction allows the u address any location within a level zero page. By supplying address as the operand and by specifying the index register address displacement within that page, the user can address the memory, thus performing the function of indexed addressi plement results from an underflow condition. The condition remains unchanged after execution of this instruction.
the immediate, the struction provides as part of the inser to directly
the base page containing the any location within ng. The two's comregister value
	TIMING:
	4 Microseconds when literal 6 Microseconds when literal
	form form
	is used, is not used.
	

	EXAMPLE:
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4. E SEQ. NO.
	LAB:
	VERB OPERANDS
	COMMENTS

	P16-m2: P16-ja44: P16-JD46: P16-)a5jD:
	26)9-jDjD4. 15-je)4jO. 27JD-J0JD7. 15-JD5J0. 273-J0JD4. 15-J06J0. 273-j37j3. 15-)370.
	FFF:
	SUA, R#0; (1) SUA, R#7. SUA, R#3; PjJIl SUA, R#3; FFF.
	SUB. IMMED. SUB. DIRECT SUB. INDEXED

52
•DPL-1 CLASS 2: ORDINARY ARITHMETIC
SUBTRACT FROM INDEX REGISTER
OBJECT
-H
SOURCE
I I i i 26I-LLL I I SUX, R#X; Literal.
I I
SUX
WHERE: I is any register (1-7).
AND: LLL is any form of literal notation.
DESCRIPTION:
Binary subtract from the index register specified, the value indicated by the immediate address. The two's complement results from an underflow condition. The condition register value remains unchanged after execution of this instruction.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P16-J052: P16-J054: P16-J056: PI 6-jD6)D.
261-]e)J04.
262-fum.
262-J017. 263-144.
15. 15' 15' 15'
■ISjO. •14jO. •15j0. •16jO.
GG6;
SUX, SUX, SUX, SUX,
R#l; R#2; R#2; R#3;
(1).
OCT:j0j34. HEX:|3F. DEC:100.
COMMENTS
BINARY
SUBTRACT FROM INDEX REG.
53
CLASS 3:
BOOLEAN ARITHMETIC
LOGICAL "AND" TO ACCUMULATOR
	OBJECT 1
	SOURCE 1

	3jD)ei-LLL 1 31J0-YXX 1 311-YXZjOjD 1 311-YXZljO 1 31I-YXZ11 1
	ANA, ANA, ANA, ANA, ANA,
	R#0; Literal. R#jO; AAA+NNN. R#X; PPP. I#X; PPP. D#X; PPP.

WHERE:
AND:
AND: AND:
AND: AND: AND:
30)0 is an immediate address
command.
LLL is any form of literal
notation.
310 is a direct address command. YXX is an 8-bit location address within a level zero page.
311 is an indexed address command, I is an index (1-7).
YXZ is a 6-bit base page address.
DESCRIPTION:
WHERE: R#jO is the immediate or direct indicator.
AND: AAA is a direct address page within level #0.
AND: NNN is a decimal byte displacement.
AND: X is any register (1-7).
AND: PPP is a decimal page notation.
AND: I-Increment register by 0JO1 after execution.
AND: D-Decrement register by JO01 after execution.
AND: R-Register value remains unchanged after execution.
Logical "and" to the Accumulator the value specified by the immediate, direct or indexed address. The immediate form of this instruction provides the means of specifying machine values of bit configurations as part of the instruction. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory, thus performing the function of indexed addressing. The value of the operand is treated as an unstructured logical quantity, and the value is applied bit by bit to the Accumumulator. The bit position in the result (Accumulator) is set to one if the corresponding bit positions in the Accumulator and the operand both contain a one; otherwise, the result bit is set to zero. (Result is one if both are ones). All operand values and results are valid. The condition register value remains unchanged after execution of this instruction.
TIMING:
EXAMPLE:
4 Microseconds when literal form is used. 6 Microseconds when literal form is not used.
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P16-J362: P16-062: P16-J066: P16-J07J0: P16-072:
300-025. 310-007. 314-030. 314-032. 314-033.
*16-020. 16-030. 16-040. 16-050. 15-060. 16-070.
LOGICAL "AND" TO ACCUMULATOR.
ANA, R#0; OCT:026.
ANA, R#0; R#7.
ANA, R#4; P06.
ANA, I#4; P05.
ANA, D#4; P06.
IMMEDIATE DIRECT INDEXED ADDRESSING
54
CLASS 3:
BOOLEAN ARITHMETIC
SHIFT & LOGICAL "AND" TO ACCUMULATOR
OBJECT
SOURCE
3JSI-LLL i i SAN, S#X; Literal
I I I I I I
LL
SAN
WHERE: I is the bit shift count (1-7), AND: LLL is any literal notation.
DESCRIPTION:
WHERE: X is the bit shift count (1-7).
This form of the logical "and" instruction performs a right circular shift of the bits in the Accumulator, by the number of bits specified in the shift counter, before the logical "and" of the literal to the Accumulator is performed.
All literal values and results are valid. The condition register value remains unchanged after the execution of this instruction.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P16-074: 303-026.
COMMENTS
*16-12j0. SHIFT AND LOGICAL "AND" TO ACCUMULATOR. 16-13)0. SAN, S#3; OCT:026.
.1 1 JQ 0 0..1 0 1.
'1 jO 1 ^ 1 0 0 0 0 0 jO 1 0 1 1 0 0 0 0 1 0 0 0 0
Initial Accumulator Value
Accumulator Value after a Shift of 3.
Literal Value
Accumulator Value after the logical "AND" of OCT:025.
55
CLASS 3:
BOOLEAN ARITHMETIC
EXCLUSIVE "OR" TO ACCUMULATOR
	OBJECT 1
	SOURCE 1

	320-LLL 1
	ERA,
	R#)ZI; Literal.

	330-YXX 1
	ERA,
	R#jO; AAA±NNN.

	33I-YXZ00 1
	ERA,
	R#X; PPP.

	331-YXZljZ) 1
	ERA,
	I#X; PPP.

	33I-YXZ11 1
	ERA,
	D#X; PPP.

 [image: Picture #15]

 WHERE: AND: AND: AND:
AND:
AND: AND:
320 is an immediate WHERE:
address command.
LLL is any form of AND:
literal notation.
33ja is a direct AND:
address command.
YXX is an 8-bit location AND:
address within a level AND:
zero page. AND:
331 is an indexed
address command. AND:
I is an index (1-7).
YXZ is a 6-bit base AND:
page address.
R#0 is the immediate or direct
indicator.
AAA is a direct address page within
level zero.
NNN is a decimal byte displacement
X is any register (1-7).
PPP is a decimal page notation.
I-Increment register by 001 after
execution.
D-Decrement register by 001 after
execution.
R-Register value remains unchanged
after execution.
DESCRIPTION:
Exclusive "or" to the Accumulator the value specified by the immediate, direct or indexed address. The immediate form of this instruction provides the means of specifying machine values or bit configurations as part of the instruction. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory. The value of the operand is treated as an unstructured logical quantity, and the value is applied bit by bit to the Accumulator. A bit position in the result (Accumulator) is set to one if the corresponding bit positions in the accumulator and as specified by the operand, are unlike; otherwise, the result bit is set to zero. (Result is one if unlike). All operand values and results are valid. The condition register value remains unchanged after execution of this instruction.
	TIMING:
	4 Microseconds when literal
	form is used.
	

	
	6 Microseconds when literal
	form is not used.
	

	EXAMPLE:
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4. E SEQ. NO.
	LAB: VERB OPERANDS
	COMMENTS

	
	*^7-mfi.
	EXCLUSIVE "OR" TO ACCUMULATOR

	P16-je)76:
	32J0-J026. 17-J07jO.
	ERA, R#0; OCT:026.
	IMMEDIATE

	P16-1J0J3:
	33i3-j0jD7. 17-J08J0.
	ERA, R#0; R#7.
	DIRECT

	P16-lje)2:
	334-JD3J3. 17-JD9J0.
	ERA, R#4; P06.
	INDEXED

	P16-1JD4:
	334-JD32. 17-ljOjO.
	ERA, I#4; P06.
	ADDRESSING

	P16-1)D6:
	334-JZI33. 17-110.
	ERA, D#4: Pj06.
	

56
CLASS 3: BOOLEANE ARITHMETIC SHIFT AND "EOR"
ACCUMULATOR
OBJECT
-H
SOURCE
09T_I I 1
\JI- X ~UUL.
SER, S#X; Literal

 [image: Picture #16]

 WHERE: I is the bit shift count (1-7). AND: LLL is any literal notation.
DESCRIPTION:
WHERE: X is the bit shift count (1-7)
This form of the exclusive "or" instruction performs a right circular shift of the bits in the Accumulator, by the number of bits specified in the shift counter, before the exclusive "or" of the literal to the Accumulator is performed. All literal values and results are valid. The condition register value remains unchanged after execution of this instruction.
TIMING: 4 Microseconds
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P16-lliD: 327-jZ)26.
	.1,1 JZ) P J
	3 1 jD 1.

	
	

	,—J=
	^r^

*17-16ja. SHIFT AND "EOR" ACCUMULATOR 17-17J0. SER, S#7; 0CT:je)26.
Initial Accumulator Value
1 0 jO ja 1 ^ 1 1 jD 0 JD 1 0 1 1 ja 1 j3 JD 1 1 1 j3 1
Accumulator Value after a Shift of 7.
Literal Value
Accumu.lator Value after the exclusive "OR" of OCT:026.
57
DPL-1
CLASS 3:
BOOLEAN ARITHMETIC
INCLUSIVE "OR" TO ACCUMULATOR
	OBJECT 1
	SOURCE 1

	360-LLL 1
	IRA,
	R#0; Literal.

	370-YXX 1
	IRA,
	R#J0; NNN.

	370-YXX 1
	IRA,
	R#)a; AAAiNNN.

	37I-YXZ00 1
	IRA,
	R#X; PPP.

	37I-YXZ10 1
	IRA,
	I#X; PPP.

	371-YXZn 1
	IRA,
	D#X; PPP.

WHERE: AND: AND AND
AND:
AND: AND:
360 is an immediate address
command.
LLL is any form of literal
notation.
370 is a direct address
command.
YXX is an 8-bit location
address within a level zero
page.
3"! is an indexed address
command.
I is an index (1-7).
YXZ is a 6-bit base page
address.
WHERE: R#0 is the immediate or direct
indicator. AND: AAA is a direct address page
within level zero. AND: NNN is a decimal byte displacement
AND: X is any register (1-7).
AND: PPP is a decimal page notation.
AND: I-Increment register by 001
after execution. AND: D-Decrement register by 001
after execution. AND: R-Register value remaining
unchanged after execution.
DESCRIPTION:
Inclusive "or" to the accumulator the value specified by the immediate, direct, or indexed address. The immediate form of this instruction provides the means of specifying machine values or bit configurations as part of the instruction. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory. The value of the operand is treated as an unstructured logical quantity, and the value is applied bit by bit to the accumulator. A bit position in the result (accumulator) is set to one if the corresponding bit position in the accumulator or as specified by the operand, either contain a one; otherwise, the result bit is set to zero. (Result is one if either are one). All operand values and results are valid. The condition register value remains unchanged after execution of this instruction.
TIMING:
EXAMPLE:
4 Microseconds when literal form is used. 6 Microseconds when literal form is not used.
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P16P16P16P16P16
112: 114: 116: 12jO: 122:
36j037j0374374374
026.
mi.
J03J0. 032. J033.
*18-ljO0. 18-lljO. 18-120. 18-130. 18-140. 18-15j0.
INCLUSIVE "OR" TO ACCUMULATOR.
IRA, R#0
IRA, R#JD
IRA, R#4
IRA, I#4
IRA, D#4
0CT:JD26.
R#7.
PJ06.
P06.
PJ06.
IMMEDIATE DIRECT INDEXED ADDRESSING
58
"DPL-l
CLASS 3: BOOLEAN ARITHMETIC
SHIFT AND "lOR" TO ACCUMULATOR
	OBJECT 1 1 SOURCE

	36I-LLL 1 : SIR, S#X; Literal. 1 i

 [image: Picture #17]

 WHERE: AND:
I is the bit shift count. LLL is any literal notation.
WHERE: X is the bit shift count.
DESCRIPTION:
This form of the inclusive "or" instruction performs a right circular shift of the bits in the Accumulator, by the number of bits specified in the shift counter* before the inclusive "or" of the literal to the Accumulator is performed. All literal values and results are valid. The condition register value remains unchanged after execution of this instruction.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI6-124: 364-026.
COMMENTS
*18-2]0j3. SHIFT AND INCLUSIVE "OR" TO ACCUMULATOR. 19-01j8. SIR, S#4; OCT:j026.
1 1 ja JO JD 1 JD 1
JO 1 JO 1 1 1 JO)J))3 j8 JO 1 j8 1 1 JO jD 1 0 1 1 1 1 JO
Initial Accumulator Value
Accumulator Value after a Shift of 4
Literal Value
Accumulator Value after the inclusive "OR" of OCT:026.
59
CLASS 3: COMPARE
COMPARE ACCUMULATOR
	OBJECT
	1 SOURCE 1

	3419-LLL
	1 CPA,
	R#0; Literal.

	350-YXX
	1 CPA,
	Rm AAAiNNN.

	35I-YXZ0JZ)
	1 CPA,
	R#X; PPP.

	35I-YXZ10
	1 CPA,
	I#X; PPP.

	351-YXZn
	1 CPA, 1
	D#X; PPP.

WHERE: 340 is an immediate address WHERE:
command. AND: LLL is any form of literal AND:
notation. AND: 35ja is a direct address AND:
command. AND: YXX is an 8-bit location ad- AND:
dress within a level zero AND:
page. AND:
AND: 351 is an indexed address
command. AND:
AND: I is any index (1-7). AND: YXZ is a 6-bit base page AND:
address.
R#0 is the immediate or direct
indicator.
AAA is a direct address page within
level zero.
NNN is a decimal byte displacement
X is any register (1-7).
PPP is a decimal page notation.
I-Increment register by 001 after
execution.
D-Decrement register by 001 after
execution.
R-Register value unchanged after
execution.
DESCRIPTION:
Compare the contents of the Accumulator to the value specified by the immediate, direct or indexed address. The immediate form of this instruction provides the means of specifying machine values or bit configurations as part of the instruction. The direct form of this instruction allows the user to directly address any level zero page. By supplying the base page address as the operand and by specifying the index register containing the address displacement within that page, the user can address any location within the memory. The character in the Accumulator is not altered. The condition register value is changed to reflect the high, low or equal result of the compare instruction. Once set, the condition register remains unchanged until modified by an instruction that reflects a different condition code.
	TIMING:
	4 Microseconds
	when literal
	form
	is us
	ed.
	

	
	6 Microseconds
	when literal
	form
	is not used.
	

	EXAMPLE:
	
	
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4. E SEQ. NO.
	LAB:
	VERB
	OPERANDS
	COMMENTS

	P16-126:
	34J0-J026.
	19-15JD.
	
	CPA,
	m-, (J).
	IMMEDIATE

	P16-13J0:
	350-jajO7.
	19-16J0.
	
	CPA,
	R#J0; R#7.
	DIRECT

	P16-132:
	34J0-136.
	19-17J0.
	
	CPA,
	R#J0; ADL:CPT.
	

	P16-134:
	354-JO3J0.
	19-18/).
	
	CPA,
	R#4; P)Z)6.
	INDEXED

	P16-136:
	354-)332.
	19-190.
	CPT:
	CPA,
	I#4; Pj06.
	ADDRESSING

	P16-14J0:
	354-J033.
	19-2jOjO.
	
	CPA,
	D#4; Pj06.
	

60
CLASS 3: COMPARE
COMPARE INDEX REGISTER
	OBJECT 1 1 SOURCE

	34I-LLL i ' CPX, R#X; Literal.

WHERE: I is any index register (1-7). WHERE: X is any register (1-7). AND: LLL is any literal notation.
DESCRIPTION:
Compare the contents of the index register specified to the byte of immediate data (literal). Comparison is binary, and all codes are valid. The value of the index register is not altered.
The condition register value is changed to reflect the high, low, or equal result of the compare instruction. Once set, the condition register remains unchanged until modified by an instruction that reflects a different condition code.
TIMING: 4 Microseconds.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P16-142: 343-0106. P16-144: 343-146.
20-jZ)6/). CRT: CPX, R#3; (3). 20-JD7JD. CPX, R#3; CRT+04.
COMMENTS
IMMEDIATE ADDR. LOC.
61
•DPL-2
GROUP 1: I/O
GET DATA (READ)
	OBJECT 11
	SOURCE

	J017-YXX-J5XX-YXX 1 1 jZ)17-YXX-2XX-YXXI 1 jD17-YXX-]D12-YXXl 1
	GET; NNN, T#N, MMM. GET; NNN, M#N, MMM. GET; NNN, KBD, MMM.

WHERE: AND:
AND:
NNN is the decimal size.
T#N, M#N, or KBD is the device number
of the Mini-Tape, the Maxi-Tape, or
the Keyboard, respectively.
MMM is the left-most high order decimal
address of the receiving field.
DESCRIPTION:
A Read operation is initiated at the I/O device, and the data is transferred from the device into memory. Page destination is initially set to 01 but may be changed with a SET PAGE Instruction. The Page remains at this setting until a different SET PAGE Instruction is executed. Any data continuing past a Page boundary will be wrapped around to the beginning of the Page.
MAXI-TAPE:
When retrieving records from Maxi-Tape, the same number of bytes as contained in the tape record must be specified by the size operand within the instruction. The size may be up to 256 bytes for Maxi-Tape. Data is placed in memory in ascending order of addresses within the "Into" Page which is currently set, starting with the address specified in the instruction.
MINI-TAPE:
When retrieving records from Mini-Tape, the physical record length must be 136 bytes. The standard Mini-Tape record is comprised of an 8-byte label, generated by the Mini-Write software function, followed by 128 bytes of data. Because the label is generated by the software and not by the user, it is not included in the record size operand. Therefore, when reading the standard Mini-Tape record, specify 128 (number of data bytes) as the size. Although a Mini-Tape record may contain a maximum of 128 bytes of data, it may be desirable to read a lesser number of characters into the input buffer. By specifying a lesser number in the size operand, only the number of characters specified will be stored into the I/O area indicated by the user. The remainder of the record will be read and used to check for tape errors and CRC Check but these characters will not be stored into the I/O Buffer. The 8-byte label is automatically read into Page 00 Locations 0308 thru 0378. The data portion of the record is placed in memory in ascending order of addresses within the "Into" Page which is currently set, starting with the address specified in the instruction. An automatic sequence check is made on the first byte of the label. If the record contains the wrong sequence number (i.e. a record was skipped), the error condition will be set.
62
GET (cont'd.)
KEYBOARD
When retrieving data from the keyboard, the same number of bytes as contained in the size operand must be entered. The keyboard Supervisor provides for corrections to be made to data entered. By depressing the "CORR" key on the keyboard, the point of entry will be backspaced one location within the current Page. The size operand may specify up to 256 bytes for the keyboard operation. Data is placed in memory in ascending order of addresses within the "Into" Page which is currently set, starting with the address specified in the instruction.
Device assignment is as follows:
	DDD
	DEVICE NAME
	SYMBOLIC CODE
	OBJECT CODE

	Standard Pair 1
	Mini-Tape 1 Mini-Tape 2
	T#l T#2
	J0J31 JDJ2)2

	Optional Pair 2
	Mini-Tape 3 Mini-Tape 4
	T#3 T#4
	J0j03 JOJ04

	Optional Pair 3
	Mini-Tape 5 Mini-Tape 6
	T#5 T#6
	m

	Optional Pair 4
	Mini-Tape 7 Mini-Tape 8
	T#7 T#8
	jaija

	
	Keyboard
	KBD
	012

	
	Maxi-Tapes
	M#N
	2px

EXAMPLE;
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI 5-,
P15
P15-jDlje):
P15-je)14:
PI 5-02^:
P15-ja24:
P15-J33J0: 14jO
15jO-jOj3ja-122-jOj04. jOl-ljOjO.
JDJO5-JO06-012-J066. J91-llj0.
jai7-2jOjD-jOj01-J0jDJD. j91-12jD.
)ajD4-i2)J2n-017-W. JD1-13J0.
j0]D4-0)34-017-144. 01-14jO.
15jD-)31j0-ljD5-03jZI. J01-15JD.
jOl-160.
ENT: SET; GET; SEL; SEL; ENT:
DPL-3.
PAG:Fj01,Tj02.
128,T#1,
L0W,P15,
HGH,P15,1)
DPL-1.
EXU; JD00.
SET PAGE READ INTO PG2 EOC RECORD? TAPE ERROR? RECORD OK RETURN
63
•DPL-2
GROUP 1: I/O
PUT DATA (WRITE)
	OBJECT 1 1 SOURCE

]027-YXX-YXX-jOXX ' ' PUT; NNN, MMM, T#N. JD27-YXX-YXX-2XX M PUT; NNN, MMM, M#N. 027-YXX-YXX-JD13 1 1 PUT; NNN, MMM, PRT.

WHERE: AND:
AND:
NNN is the decimal size.
MMM is the left-most high order
decimal address of the sending
field.
T#N, M#N, or PRT is the device
number of the Mini-tape, the Maxi
tape, or the Printer; respectively.
DESCRIPTION:
A Write operation is initiated at the I/O device, and the data is transferred from memory to the device. The Page source is initially set to 01, but may be changed with a SET PAGE Instruction. The Page remains at this setting until a different SET PAGE Instruction is executed. Data can be written from any Location within a Page. Any data continuing past the Page boundaries, based on the size operand, will be wrapped around to the beginning of the Page.
MAXI-TAPE:
When writing records to Maxi-Tape, the actual number of bytes desired to be written must be specified by the size operand within the Instruction. The size may be up to 256 bytes for Maxi-Tape. Data in memory is fetched in an ascending order of addresses, within the "From" Page which is currently set, starting with the address specified in the Instruction.
MINI-TAPE:
When writing records to Mini-Tape, the physical record length will be 136 bytes. The standard Mini-Tape record is comprised of an 8-byte label, generated by the software function, followed by 128 bytes of data. Because the label is generated by the software and not by the user, it is not included in the record size operand. Therefore, when writing'the Standard Mini-Tape record, specify 128 (number of data bytes) as the size. Although a Mini-Tape record may contain a maximum of 128 bytes of data, it may be desirable to write a lesser number of characters from the input buffer. By specifying a lesser number in the size operand, only the number of characters specified will be written from the I/O area indicated by the user. The remainder of the record will contain Octal zeroes. Thie complete 136 byte record will be used to check for tape write errors.
64
MINI-TAPE (cont'd.)
The 8-byte label is automatically written from Page 00 locations OSOs thru 037o. The record sequence number is automatically generated by the MiniWrite software function. The remainder of the label may be controlled by the user. The data portion of the record is written from memory in ascending order of addresses within the "From" Page which is currently set, starting with the address specified in the Instruction.
PRINTER:
When printing, the actual number of bytes desired to be printed must be specified by the size operand within the Instruction. The size may be up to 256 characters. Data in memory is fetched in an ascending order of addresses, within the "From" Page which is currently set, starting with the address specified in the Instruction.
In order to execute a control command for the Print Function as part of the data, the control byte must have the high-order bit present (Ref. I/O Instruction) (i.e. to execute an "Index Function for the typewriter, either execute PCL; Pjai, PRT, lOX, or Place OCTAL 212 as a character in the print buffer).
There will be an automatic Carriage Return after each print command.
Device assignment is as follows:
	ODD
	DEVICE NAME
	SYMBOLIC CODE
	OBJECT CODE

	Standard Pair 1
	Min" Mini
	-Tape 1 -Tape 2
	T#l T#2
	J0J01 j0jD2

	Optional Pair 2
	MinMim
	-Tape 3 -Tape 4
	T#3 T#4
	J0J93
fum

	Optional Pair 3
	MinMini
	-Tape 5 -Tape 6
	T#5 T#6
	JOJ06

	Optional Pair 4
	MinMim
	-Tape 7 -Tape 8
	T#7 T#8
	m7 mm

	
	Printer
	PRT
	iD13

	
	Maxi-Tapes
	M#N
	2jax

65
PUT (cont'd.)
EXAMPLE;
	PPP-LLL:
	MP1-MP2-MP3-MP4.
	E SEQ. NO.
	LAB: VERE
	5 OPERANDS
	COMMENTS

	P15-J032:
	150-000-122-004.
	02-020.
	ENT
	DPL-3.
	

	PI 5-036:
	005-056-006-066.
	02-030.
	SET"
	, PAG:F11,T01.
	SET PAGE

	PI 5-042:
	027-200-000-001.
	02-040.
	PUT:
	, 128,000,T#1.
	WRITE

	PI 5-046:
	004-001-017-000.
	02-050.
	SEL'
	, LOW,PI 5,000.
	EOF(REF.SPOT)

	PI 5-052:
	004-004-017-144.
	02-060.
	SEL:
	, HGH,P15,100.
	TAPE ERROR?

	PI 5-056:
	150-010-105-062.
	02-070.
	ENT:
	DPL-1.
	RECORD OK

	PI 5-062:
	140-000.
	02-080.
	EXU:
	. 000.
	RETURN

66
GET & PUT
LINKAGE:
The GET or PUT Functions may be used in a DPL-1 context in conjunction with the Pseudo (ENT:IOS) or it may be used in a DPL-3 context (ENT:DPL-3).
RETURN STATUS (DPL-3)
If the software condition value (POO-377) is "=", function good.
If the software condition value (POO-377) is ">", tape 8-retry error (or Read Sequence error).
If the software condition value (POO-377) is "<", file mark read.
The above conditions may be tested by the software by using the "SEL;" commands.
Location POO-0178 contains the Status Byte - Refer to the Instruction Reference Cards for Error Conditions.
Return Status (IGS)
The return from ENTiIOS will set the status in the hardware condition register and can be tested using DPL-1 corresponding to the above conditions.
67
GROUP 2: DATA MODIFY
MOVE STORAGE TO STORAGE
OBJECT
037-YXX-YXX-YXX
SOURCE
MOV; NNN, AAA, BBB.
	WHERE:
	NNN is
	the decimal size.

	AND:
	AAA is
	a decimal or symbolic

	
	"from"
	address.

	AND:
	BBB is
	the decimal or symbolic

	
	"into"
	address.

DESCRIPTION:
The DPL-2 move instruction is used for a storage-to-storage move where the data specified by the A-operand is moved to the address specified by the B-operand address. In storage-to-storage movement the fields may overlap in any desired way. Movement is left to right through each field a byte at a time.
The "from" and "into" page are initialized as page one. To move "from" a page, or "into" a page other than page one, a SET PAGE instruction must have been previously executed. The page remains at this setting until a different SET PAGE instruction is executed.
The A-operand and the B-operand may be within the same page or in different pages, Any data continuing past page boundaries will be wrapped around to the beginning of the page.
The software condition value remains unchanged.
The hardware condition register is inpredictable after execution of any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5-064: 150
Pl5-070: 005-012
PI 5-074: 037-012
122
006-066.
040-040.
02-15j&. 02-160. 02-170.
ENT: DPL-3.
SET; PAG:F02,T01.
MOV; 010,032,032.
COMMENTS
MOVE 10 CHAR. FROM PAGE 2 TO PAGE 1
68
GROUP 2: DATA MODIFY
ADD STORAGETO-STORAGE
OBJECT
TT
SOURCE
I I
JD47-YXX-YXX-YXX ' ' ADD; NNN, AAA, BBB.
I I I I
U
DESCRIPTION:
WHERE: NNN is the decimal size.
AND: AAA is a decimal or symbolic addend
1 address.
AND: BBB is a decimal or symbolic addend
2 address. (AAA+BBB)=BBB
The ADD command adds a decimal value specified by the A-operand to a decimal value specified by the B-operand for the number of bytes indicated by the size operand. The A-operand value and the B-operand value must be the same size. The A-operand value and the B-operand value may contain a sign although it is not included in the size count. Addition is algebraic. The results of the addition displaces the previous contents of the B-operand field and any overflow character is lost. The octal value of 001 (-) is the minus sign. Any other value is assumed to be positive. If the A-operand field contains a minus sign, a sign position must be reserved in the result field.
The A-operand field and the B-operand field may be within the same page or different pages as specified by a Set Page instruction.
The software condition value is unchanged.
The hardware condition register is unpredictable after execution of any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-llOjO: 047-J003-J0iOjO-lJ00. 03-040. ADD; 003,000,064.
*03-050.
*03-060. 600 + (B-OPERAND)
*03-070. 200 - (A-OPERAND) *03-080.
*03-090. 400 + (B-OPERAND RESULT)
COMMENTS
69
GROUP 2: DATA MODIFY
SUBTRACT STORAGETO-STORAGE
OBJECT
057-YXX-YXX-YXX
SOURCE
SUB; NNN, AAA, BBB.
WHERE: NNN is the decimal size. AND: AAA is a decimal or symbolic
subtrahend address. AND: BBB is a decimal or symbolic
minuend address.
(BBB-AAA) = BBB
DESCRIPTION;
The SUB command subtracts a decimal value specified by the A-operand from a decimal value specified by the B-operand. The A-operand value and the B-operand value must be the same size.
The A-operand value and the B-operand value may contain a sign, although it is not included in the size count. Subtraction is algebraic. The result of the subtraction displaces the previous contents of the B-operand field and any overflow character is lost.
The octal value of 0JO1 (-) is the minus sign. Any other value is assumed to be positive. A sign position must be reserved in the result field.
The A-operand and the B-operand fields may be within the same page or different pages as specified by a set page instruction.
The software condition value is unchanged.
The hardware condition register is unpredictable after execution of any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. 1^0. LAB: VERB OPERANDS
P15-1J04: J557-JDJD3-)3JDJD-1J0)3. J)3-150. SUB; 0)D3,jO)DjO,jO64.
*^3-16ja.
*J03-17)D. 2j0jD - (B-OPERAND)
*03-180. 1JO0 + (A-OPERAND) *03-19j3.
*je)3-2jDjO. 3m - (B-OPERAND RESULT)
COMMENTS
70
GROUP 2: DATA MODIFY
MULTIPLY
	OBJECT 1 1 SOURCE

	067-YXX-YXX-YXX 1 1 MUL; NNN, AAA, BBB.

 [image: Picture #18]

 WHERE: NNN is the decimal size.
AND: AAA is a high order decimal or
symbolic multiplier address. AND: BBB is a high order decimal or
symbolic multiplicand address.
DESCRIPTION:
The MUL command multiplies a decimal value specified by decimal value specified by the A-operand (A x B) for the dicated by the size operand. The multiplier may contain not included in the size count. An unsigned multiplier The extended product area, the size of the multiplicand with decimal zeros, must be reserved immediately followi If the multiplicand field is to contain a sign, it must following the product area. An unsigned multiplicand fi positive. The octal value of jOjOl (-) is the minus sign, assumed to be positive. If the Multiplier contains a mi must be reserved in the product field. The sign result algebraic.
the B-operand by a number of bytes ina sign, although it is IS assumed to be positive, field plus one, filled ng the multiplicand field, appear immediately eld is assumed to be Any other value is nus sign, a sign position in the product field is
The product result of the multiplication displaces the previous contents of the multiplicand field and is right justified with left zeros in the product field.
Unit Position of the Multiplier Field is: AAA+NNN-jDjOl. Unit Position of the Multiplicand Field is: BBB+NNN-JZ)01. Unit Position of the Product Field is: BBB+2xNNN.
The multiplier and the multiplicand fields may be- within the same page or different pages as specified by a set page instruction.
The software condition value is uhchanged.
The hardware condition register is unpredictable after execution of any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI5-110: 005-J306-J0JO6-066. m-j06jO. PI5-114: j067-0]03-0je)0-ljOjO. 04-070.
SET; PAG:F01,T01. MUL; 003,000,064.
COMMENTS
71
DPL-2
GROUP 2: DATA MODIFY
DIVIDE
OBJECT
077-YXX-YXX-YXX
SOURCE
DIV; NNN, AAA, BBB,

 [image: Picture #19]

 WHERE: AND:
AND:
is the decimal size. AAA is a decimal or symbolic divisor address.
BBB is a decimal or symbolic dividend address.
DESCRIPTION:
The DIV command divides a decimal value specified by the B-operand by a decimal value specified by the A-operand for the number of bytes indicated by the size operand. The size of the dividend field must be twice the size of the divisor field plus one. The dividend field must be right justified and have at least one leading zero. The maximum value of the dividend is the result of the maximum
value of a multiply of the same size. (999)2. The divisor and the dividend
fields may contain a sign although it is not included in the size count. The size count is the size of the divisor. An unsigned field is assumed to be positive. Division is algebraic. The octal value JOJOI (-) is the minus sign. Any other value is assumed to be positive. If the divisor contains a minus sign, a sign position must be reserved in the quotient field.
The quotient result of the division desplaces the previous contents of the dividend field and is left justified. The size of the quotient is the size of the divisor. The remainder is placed immediately following the quotient.
Unit Position of the Divisor Field is: Unit Position of the Dividend Field is: Unit Position of the Quotient Field is:
AAA+NNN-JOJOI
BBB+2xNNN.
BBB+NNN-i301
The divisor and the dividend fields may be within the same page or different pages as specified by a Set Page instruction.
The software condition value is unchanged.
The hardware condition register is unpredictable after execution of any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI5-12)0: jaj05-jOj06-jOjZ)6-j066. 04-130. P15-124: J077-JDJD3-J0j3j0-1JDJ3. J04-I4j0.
SET; PAG:F)Dl,Tj01, DIV; JOJ03,000,064.
72
DPL-2 GROUPS: COMPARE
COMPARE STORAGE-TO-STORAGE
OBJECT
0JZ»3-YXX-YXX-YXX
SOURCE
I COM; NNN, AAA, BBB,
11

 [image: Picture #20]

 WHERE: AND:
AND:
NNN is the decimal size. AAA is the high order decimal or symbolic address of the compare field.
BBB is the high order decimal or symbolic address of the field compared to.
DESCRIPTION:
Within the current page setting established by a set page instruction, compare the data specified by the A-operand address to the data specified by the Boperand address for the number of bytes indicated by the size operand. The comparison operation proceeds left to right through each field a byte at a time and ends when an inequality is found or end of field is reached. Comparison is binary, with a collating sequence based on ascending binary values. All codes are valid. Memory is not altered as a result of this operation. A field that overflows a page boundary will wrap around to the beginning of the page.
The software condition register is memory location PJ80 377o. This will contain an octal j360 for> ,)857 for < or (366 for =. The "SEL" instructions will test these conditions.
The result of the compare operation is indicated by the software condition value.
	HIGH
	AAA
	>
	BBB

	LOW
	AAA
	<
	BBB

	EQUAL
	AAA
	—
	BBB

EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI 5-130: PI 5-134: P15-140: PI 5-144: P15-150:
005-002-1976-066. 003-012-150-310. 004-002-006-000. 004-000-014-000.
05-010. 05-020. 05-030. 05-040. 05-050.
C02:
SET; PAG:F00J15,
COM; 010,002,200.
SEL; EQL,P06,000.
SEL; UNC,P12,000.
A/N: (COMPARE XX)
73
GROUP 3: SELECT
SELECT UNCONDITIONAL
	OBJECT 1 1 SOURCE

	004-000-YXX-YXX 1 1 SEL; UNC, RRR.
1 1 PNN, LLL.
1 1

WHERE: RRR is a symbolic address. AND: NN is a decimal page. AND: LLL is a decimal address.
DESCRIPTION:
The Select (Branch) Uncondition command is used in a DPL-3 context to transfer control to a new instruction location regardless of the setting of the software condition value.
The DPL-2 commands are executed in an interpretive mode and therefore are not limited to section boundaries. In the interpretive mode the SEL command may be used to transfer control to any DPL-2 command or to any DPL-1 command except the DPL-1 branch functions and the jump functions. DPL-1 branch functions and jump functions can only be used in the DPL-1 mode of operation (ENT:DPL-1). The branch address may be represented as a symbolic address or as an absolute address. The software condition value remains unchanged.
	EXAMPLE:
	
	
	
	
	

	PPP-LLL:
	MP1-MP2-MP3-MP4.
	E SEQ. NO.
	LAB: VERB
	OPERANDS
	COMMENTS

	PI 5-162: P15-166:
	J304-)D)D0-JO17-W.
0m-w-jai5-i66.
	JD5-11)Q. 05-12J?).
	SEL; Sj31: SEL;
	UNC,P15,0JD0. UNC,SJ51.
	

74
GROUP 3: SELECT
SELECT LOW
	OBJECT ! 1 SOURCE

	1 1
1 1
jDj84-0i81-YXX-YX)^ 1 SEL; LOW, RRR.
1 1 PNN, LLL.
1 1
1 i

 [image: Picture #21]

 DESCRIPTION:
WHERE: RRR is a symbolic address AND: NN is a decimal page. AND: LLL is a decimal address.
The conditional branch command, select LOW, is used in a DPL-3 context to transfer control to a new instruction location if the software condition register previously set by a DPL-2 compare or a DPL-2 I/O instruction is found to be LOW. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
05-180. SEL; LOW,P15,P0j0. 05-19j5. S02: SEL; LOW,S02.
COMMENTS
PI 5-172: 004-001-017-f PI 5-176: 004-001-015-176.
75
GROUP 3: SELECT
SELECT EQUAL
	OBJECT 1 1 SOURCE

	j3|84-)802-YXX-YXX 1 | SEL; EQL, RRR.
1 1 PNN, LLL.

 [image: Picture #22]

 WHERE: RRR is a symbolic address AND: NN is a decimal page. AND: LLL is a decimal address.
DESCRIPTION:
The conditional branch command, select EQUAL, is used in a DPL-3 context to transfer control to a new instruction location if the software condition value previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be EQUAL. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI5-202:)8jZ)4-)Z)00-jD17-0JZ)0. 06-05)3. SEL; EQU,P15, PI5-206: 004-002-015-206. 06-060. S03: SEL; EQL,S03.
COMMENTS
76
	OUP 3: SELECT
	SELECT HIGH

	OBJECT 1
	SOURCE

	004-004-YXX-YXX j
1
	SEL; HGH, RRR.
PNN, LLL.

 [image: Picture #23]

 WHERE: RRR is a symbolic address. AND: NN is a decimal page. AND: LLL is a decimal address.
DESCRIPTION:
The conditional branch command, select HIGH, is used in a DPL-3 context to transfer control to a new instruction location if the software condition value previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be HIGH. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-212: 0)34-0134-017-1900. 06-120. SEL; HGH,P15,000. PI5-216: 004-004-015-216. 06-130. S04: SEL; HGH,S04.
COMMENTS
77
GROUP 3;
SELECT
SELECT NOT HIGH
	OBJECT 1 1 SOURCE

	j3ja4_jD14_YXX-YXX 1 1 SEL; NHG, RRR.
1 1 PNN, LLL.

DESCRIPTION;
WHERE: RRR is a symbolic address. AND: NN is a decimal page. AND: LLL is a decimal address.
The conditional branch command, select NOT HIGH, is used in a DPL-3 context to transfer control to a new instruction location if the software condition value previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be LOW or EQUAL. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P15-222: P15-226:
JDj34-)314-017004-014-1315-226.
06-200. 07-010
S05;
SEL; SEL;
NHG,PI 5, NHG,S05,
78
GROUP 3: SELECT
SELECT NOT EQUAL
OBJECT
SOURCE
I 004-012-YXX-YXX ! ! SEL;NEQ, RRR
I
PNN, LLL,

 [image: Picture #24]

 DESCRIPTION:
WHERE: RRR is a symbolic address. AND: NN is a decimal page. AND: LLL is a decimal address.
The conditional branch command, select NOT EQUAL, is used in a DPL-3 context to transfer control to a new instruction location if the software condition value previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be LOW or HIGH. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI5-232: |3jD4-|ai2-jDl7-000. 07-070. SEL;
P15-236: 004-012-015-236. 07-080. S06: SEL;
NEQ, PI 5,000. NEQ,S06.
79
GROUP 3: SELECT
SELECT NOT LOW
	OBJECT 1 1 SOURCE

	PJZi4-011-YXX-YXX 1 1 SEL;NLW, RRR.
j 1 PNN, LLL.
1 1

DESCRIPTION:
WHERE: RRR is a symbolic address. AND: NN is a decimal page. AND: LLL is a decimal address.
The conditional branch command, select NOT LOW, is used in a DPL-3 context to transfer control to a new instruction location if the condition value previously set by a DPL-2 compare or DPL-2 I/O instruction is found to be HIGH or EQUAL. If the condition is not satisfied, the next sequential instruction is executed.
(Refer to "SEL;UNC" for Basic Rules of Select Branching)
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-242: jZ)04-jZ)l 1-017-13)3)8.)37-14)3. SEL; NLW,P15,)3)3)3. P15-246:)3J34-)311-1315-246. J37-15)Z). S)D7: SEL; NLW,Sp7.
COMMENTS
80
GROUP 4: SET PAGE
SET PAGE
OBJECT
JZ)05-FFF-TTT-III
SOURCE
I SET; PAG: FNN, TNN.
11
WHERE:
AND:
AND:
FFF is the DPL A-Operand WHERE:
(from) page.
TTT is the DPL B-Operand AND:
(to) page.
Ill is the DPL Instruction
page.
FNN is the decimal page setting for the A-Operand data instructions. TNN is the decimal page setting for the B-Operand data instructions,
DESCRIPTION:
The A-Operand and the B-Operand, in the DPL-2 data functions, specify an address within a page where the data resides. The set page instruction provides a means of controlling the setting of that page as a base address. The page setting for the A-Operand and the B-Operand may be the same page or they may be different pages regardless of the section. Only operands that specify data use the page setting. The page setting is unchanged until another set page instruction is executed reflection different pages.
The software condition value is unchanged.
The hardware condition register is unpredictable after execution on any instruction executed in DPL-3 or lOS Mode.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
P15-252: P15-256: P15-262:
jOjD5-je)06-j376-066. J037-J012-024-112. 037-1004-012-024.
JO8-010. Sj08: SET 08-02J0. MOV
08-JO30. MOV
PAG:F01,T15. 010,020,074. 004,010,020.
COMMENTS
MOVE CHAR. FROM PAGE 1 TO PAGE 15
81
GROUP 4. I/O CONTROL
TAPE CONTROL COMMANDS
	OBJECT SOURCE I

	007-001-0XX-001| , TCL 007-001-2XX-001 TCL 007-001-2XX-002 TCL 007-001-2XX-003 TCL 007-001-2XX-004| 1 TCL
1 1
	, 001, T#N, BSP. , 001, M#N, BSP. ; 001, M#N, RWD. ; 001, M#N. RWI. ; 001, M#N, WFM.

WHERE: N is a decimal tape device number, AND: BSP is a backspace record function, AND: RWI is a maxi-tape rewind with
interlock function, AND: RWD is a maxi-tape rewind without
interlock function, AND: WFM is a maxi-tape write file mark.
DESCRIPTION:
These commands control the basic tape operations for the device specified
in the instruction. The backspace function (BSP) applies to all tape I/O
devices. The backspace function backspaces the device specified by one record.
The two rewind functions and the write file mark function apply only to maxi-tape devices. The rewind with interlock function (RWI) rewinds the maxi-tape specified and takes the device off-line. After the device has been set off-line, manual intervention is required to return the device to on-line status. The rewind without interlock function (RWD) rewinds the maxi-tape specified, but does not take the device off-line. The write file mark function (WFM) writes a special hardware 3-byte file mark for the maxi-tape specified.
EXAMPLE:
	PPP
	-LLL:
	MP1-MP2
	-MP3-MP4.
	E SEQ. NO.
	LAB: VERE
	i OPERANDS
	COMMENTS

	P15
	■266:
	JO07-001
	-001-001.
	08-100.
	TCL
	, 001
	,T#1
	,BSP.
	BKSP MINI-1

	P15
	■272:
	007-001
	-201-001.
	08-110.
	TCL;
	. 001
	,M#1,
	,BSP.
	BKSP MAXI

	P15
	■276:
	007-001
	-202-002.
	08-120.
	TCL:
	. 001
	,M#2,
	,RWD.
	RWD MAXI W/INTL

	P15-302:
	007-001
	-203-003.
	08-130.
	TCL
	. 001
	,M#3
	,RWI.
	RWD MAXI-NO INT

	P15
	■306:
	007-001 ■
	-204-004.
	08-140.
	TCL:
	. 001
	,M#4,WFM.
	WR.FILE MK-MAXI

82
GROUP 4.
TYPEWRITER CONTROL (TYPES I & II)
	OBJECT SOURCE

	007-001-013-002 , PCL; 001, PRT, BSC. 007-001-013-003 PCL; 001, PRT, RRS. 007-001-013-004 PCL; 001, PRT, CRT. 007-001-013-006 PCL; 001, PRT, BRS. 007-001-013-011 PCL; 001, PRT, TAB. 007-001-013-012 PCL; 001, PRT, IDX.

DESCRIPTION:
These commands will control the paper and carriage positioning on the IBM 73)8 and 735 typewriters.
Backspace carriage one character position.
Red ribbon shift (optional on 735).
Carriage return.
Black ribbon shift (optional on 735).
Position carriage to the first tab stop.
Index paper one line.
	002
	(BSC)

	003
	(RRS)

	004
	(CRT)

	006
	(BRS)

	011
	(TAB)

	012
	(IDX)

EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5-312: JO07-JDJO1-JO13-011. JO8-2J9J0.
PI 5-316: 027-012-00J3-013. JO9-010.
PI 5-322: 007-001-JD13-JO04. 09-JO20.
PI 5-326: 007-001-013-012. 09-030.
PI 5-332: 004-000-015-312. 09-040.
CPT: PCL; 001,PRT,TAB.
PUT; 010,000,PRT.
PCL; 001,PRT,CRT.
PCL; 001,PRT,IDX.
SEL; UNCCPT.
COMMENTS
TAB ONE FIELD PRINT 10 CHAR. CARRIAGE RETURN INDEX ONE LINE
83
.DPL-2
GROUP 4
LINE PRINTER CONTROL (TYPE II)
	OBJECT 1 1 SOURCE

	jO]O7-jO01-jai3-jO6]Ol 1 PCL; jOjOl, PRT, TOF. J0j07-J0j01-jOl3-JO70 1 1 PCL; 0jOl, PRT, LFD.

 [image: Picture #25]

 DESCRIPTION:
These commands control the paper positioning on the medium speed line printers,
]O60 (TOP) When this command is given the paper will slew to "top of form".
jO70 (LFD) This command will feed one line of paper.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
PI 5-336: J027-1 PI 5-342: 004 PI 5-346: 007 PI 5-352:
013.
017-000.
013-070.
-015-336.
09-100. 09-110. 09-120. 09-130.
WTT: PUT SEL PCL SEL
064,000,PRT. HGH,PI 5,000. 001,PRT,LFD. UNCWTT.
COMMENTS
PRINT 64 CHAR. PRINT ERROR ADVANCE 1 LINE
84
NOTATIONS FOR DPL-3B CONSTANTS
These statements are used to enter data constants into memory, to define and reserve areas of memory, and to specify the address of relocatable symbols. The statements may be named by symbols so that other program elements can refer to the fields they generate.
The forms OCT, DEC, HEX and A/N may specify one constant or a string of constants.
The form DSA provides a method of reserving specified areas of memory for future reference. The contents of the reserved area is not disturbed.
The form ADC provides a means of storing the address components of relocatable symbols. ADC generates a two-byte constant, containing the DPL code of the page and the octal code of the location of the symbol.
CONSTANT NOTATIONS
OCT: (NNN-NNN-NNN-etc.)
A byte-string constant in octal notation where the maximum number of terms is six.
HEX: (HH-HH-HH-etc.)
A byte-string constant in Hex notation where the maximum number of terms is eight.
DEC: (NNN-NNN-NNN-etc.)
A byte-string constant in decimal notation where the maximum number of terms is six.
A/N: (XXXXXXX... etc.)
A string of keyboard characters where the maximum number of characters is 24.
DSA: (NNN)
Define Symbol area where NNN is decimal number of bytes required up to 256.
ADC: (AAA+NNN)
Address constant for labels in symbolic notation. This instruction generates two-bytes. The first byte contains the DPL page of the address specified in increment form. The second byte contains the location.
85
PSEUDO
ORIGIN LOCATION COUNTER
	OBJECT 1 1 SOURCE

	' ' ORG: PNN, LLL. ' ' ORG: PNN.

 [image: Picture #26]

 WHERE: NN is the decimal page of the program origin.
AND: LLL is the decimal location within the page.
AND: Where LLL is not specified location 000 is assumed.
DESCRIPTION
The assembler uses the decimal term specified by the operand to alter the
setting of the location counter for the current segment. This value should
be on a half-word boundary if instruction statements are to follow.
ORG instruction must appear following each SEG (segment)
statement, and may appear elsewhere within the segment.
tion is omitted following SEG or OVL, the assembler sets
tion address to zero. The ORG operand specifies a page
either an absolute address, or as an implied address of location 000 within
the page specified, if the location is not included in the operand. Each
ORG statement is considered one label of the 128 possible labels.
The or OVL (overlay) If the ORG instruc" the initial instrucand location as
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
IJO-JOIJO. 1J0-J32J0. IJO-PSJO. 1JZ)-04JO. Ije)-J05j0.
PI 2-1 P12-20JZ):
	OVL
	PID.

	ORG
	PljO.

	A/N
	: (J012).

	ORG
	: PljO, 128

	A/N
	: (XXX).

COMMENTS
OVERLAY ID ORIGIN PljD,
ORIGIN PljO.128
86
CLASS: PSEUDO
IDENTIFY SEGMENT
	OBJECT 1 1 SOURCE

	1 1 SEG: RID. 1 1

WHERE: PID is any 3 character segment identification.
DESCRIPTION:
A segment is a block of program coding that can be relocated independently of other coding if linkage addresses are changed where necessary. The concept of program segmenting is a consideration at coding time, assembly time, and at object generation time. By using the form of the Branch functions specifying the absolute address to which control is to be passed at execution time, external segments may be referenced. In assembled multi-segment programs, segments may symbolically address locations in other segments. A program is composed of at least one segment, and the SEG or OVL pseudo must be the first instruction encountered during assembly which is immediately followed by an ORG pseudo. Any three characters may be used for segment identification. The SEG identification is contained in all subsequent source instructions up to the end of the segment. The SEG identification assigned by the SEG pseudo is used in conjunction with the USE pseudo to retrieve external segments at object generation time.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P1J0-J5J3J5: 200
10-lljO. 1JZ)-12J0. 1JO-13J0.
SEG: PID. ORG: PJ08, 000, LDA, R#0; OCT:
SEGMENT ID START LOCATION
87
DPL-1
PSEUDO
ENTER CONTROL FUNCTION
	OBJECT 1 1 SOURCE

	15JD-YXX-10X-YXX 1 1 ENT: DPL-1. 15JD-j8j8jZ)-l 22-004 1 1 ENT: DPL-3. 15)3-JDJ8JZ)-123-18134 ll ENT: I OS.
1 1

WHERE: 15ja-YXX is the section.
DESCRIPTION:
WHERE: DPL-1 is a machine executable mode, AND: DPL-3 is an interpretive mode. AND: IDS is the I/O supervisor.
ENT:
The ENT pseudo instructions change the operating context for the program instructions. There are three forms of the ENT pseudo and each generates Branch linkage code to the appropriate control point.
ENT:DPL-1 switches the instruction environment from interpretive DPL-3 mode into direct execution DPL-1 mode. DPL-1 mode is the normal hardware context and executes instructions at machine speed. Only DPL-1 and Pseudo instructions may be executed in DPL-1 mode. This pseudo will be an SMS and a BRU to the next instruction in sequence.
ENT:DPL-3 switches the instruction environment from direct DPL-1 mode into interpretive DPL-3 mode. In DPL-3 mode any DPL-1 instruction except Class j3, Class 1 and any DPL-2 statement may be executed under control of a resident software monitor. Exit from DPL-3 mode is accomplished only with an ENT:DPL-1 pseudo instruction.
ENT:IOS switches control temporarily from a DPL-1 context into the Input/Output Supervisor for the execution of one I/Ofunction. The DPL-2 I/O commands (GET, PUT, SET, TCL, PCL)are used to specify the I/O operation. Following execution, control is automatically returned to DPL-1 mode and the succeeding instructions.
lOS:
The Input Output Supervisor is a resident monitor program used to provide complete I/O functions for DPL-1 programs. The ENT:IOS pseudo instruction is used to turn program control over to the Supervisor. After one complete I/O function has been performed, program control is automatically returned to the using DPL-1 program. The I/O function to be performed is specified using a GET, PUT, PCL or TCL command from the DPL-2 instruction set. A SET;PAG command may precede the I/O function command where required.
(continued)
88
ENT (cont'd.)
The I/O buffer page for the Supervisor is set initially to page 01. The SET;PAG command changes the page context for the GET and PUT commands where desired.
All index registers in section 0 are used by the lOS during its operation and their contents lost. Any valuable data contained in these index registers should be saved by the user progrom before calling the Supervisor and restored by the user program after return from the lOS.
The Supervisor uses the software status byte as return to the user program. This condition may "SEL" command. Equal condition means that the fully completed. High condition indicates that condition means that a file mark or end of file a tape read operation. When a high condition i branch to an error routine. The software statu gnose an error that occurred during a mini-tape byte contains the value eight, a retry failure
a status indicator upon its be tested by using the DPL-2
I/O function has been successan error has occurred. Low record has been detected during
s encountered the user should
s byte (Pj3j3-0178) can help diaread or write. If the status
is indicated.
Refer to the Cogar System 4 Instruction Reference Card for explanation of the status byte.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
PI 0-002: PI 0-004: P10-010: P10-014: PI 0-020: P10-024:
201-012.
150-000-122-004.
017-200-001-200.
037-012-200-226.
047-012-226-310.
150-010-100-030.
PI 0-030: 150-000-123-004.
PI 0-034: 005-006-076-042.
PI 0-040: 017-200-001-000.
PI0-044: 201-030.
10-190. 10-200. 11-010. 11-020. 11-030. 11-040. *11-050. 11-060. 11-070. 11-080. 11-Ji
LDX,
ENT
GET
MOV
ADD
ENT
ENT SET GET LDX,
R#l; HEX:0A.
DPL-3.
128,T#1,128.
010,128,150.
010,150,200.
DPL-1 .
lOS.
PAG:F01,T15. 128,T#1,000. R#l, DEC:024.
(OPTIONAL INST) AUTOMATICALLYENTERS DPL-1
89
PSEUDO
EQUATE SYMBOL
	OBJECT 1 1 SOURCE

	I LAB: EQU: PNN, LLL. 1 1 LAB: EQU: RRR.

WHERE: LAB is a symbolic label. AND: NN is the decimal page. AND: LLL is the decimal location
within the page. AND: RRR is a symbolic reference,
DESCRIPTION
The EQU pseudo instruction defines a symbol by assigning it to either an absolute location or another symbol. The EQU instruction is the means of equating symbols to registers, relocatable expressions, and other arbitrary values.
The EQU operand may be represented as an absolute expression, or as a symbolic label present in the context of the program unit.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO. LAB: VERB OPERANDS
COMMENTS
P12-0J00: 231-052. P12-jOjD2: im-jOjZ)0.
	11-16J0.
	
	SEG
	: ABC.
	

	11-170.
	
	ORG
	: P10.
	

	11-180.
	E01:
	EQU
	P12,
	000

	11-190.
	E02:
	EQU,
	XYZ.
	

	*11-200.
	
	
	
	

	12-010.
	XYZ:
	STA
	, l#l;
	P10

	12-020.
	
	BRU;
	E01.
	

EQUATE E01 TO AN EXTERNAL SEGMENT E02-INTERNAL
90
CLASS: PSEUDO
OVERLAY
OBJECT
SOURCE
OVL: RID.

 [image: Picture #27]

 WHERE: PID is any 3 non-blank character overlay identification.
DESCRIPTION:
The OVL pseudo names a section of program coding in the same way that SEG
pseudo does, and restrictions are identical. Program overlays must be considered
at coding time.
In contrast to the SEG segment, which generates object coding into the main body of the program, the OVL segment generates overlay records outside the main body.
At object generation time, each OVL segment is inserted into the object string tape, in the order that they occur, following the records used in loading the full memory. The overlay records are retrieved into memory, under user program control, using the normal I/O procedures.
	EXAMPLE:
	LAB:
	VERB
	OPERANDS
	

	PPP-LLL: MP1-MP2-MP3-MP4. E SEQ. NO.
	COMMENTS

	12-JO80.
	
	SEG:
	PID.
	MAIN BODY OF

	12-JD90.
	
	ORG:
	PI JO, J0JD0.
	PROGRAM

	*^2-^m.
	
	
	
	

	*12-110.
	
	
	
	

	12-12J0.
	
	OVL:
	XYZ.
	1ST OVERLAY

	12-130.
	
	ORG:
	PJ32, jbfDfD.
	RECORD

	*12-140.
	
	
	
	

	12-15J0.
	
	END:
	*+J0.
	(MUST HAVE E

91
CLASS: PSEUDO USE EXTERNAL SOURCE SEGMENT
OBJECT
SOURCE
USE: PID.
WHERE: PID is an external SEG identifier.
OVL or
DESCRIPTION
The US fined progra tion t identi ment n genera string The us the so by the the US unti 1 segmen counte place, i n i t i a
E pseu segmen m. Th ime, G fy the ame es tion t
gener er is urce p
USE 0 E oper an END t spec red (n When ted by
do instru t or over e retriev an be eff
3 positi t a b 1 i s h e d ime, when ation of then inst rimer tap perand. and will
pseudo i ified by ested USE
a segmen
using th
ction lay th al of ected on nam on th a USE the cu ructed e cont The fi contin nstruc the US) the t is c e most
i denti at is these only i e in t e sour
pseud rrent
to CO a i n i n g rst se ue the tion i E pseu same i omplet
curre
fies an to form segments f the as he USE 0 ce prime 0 is enc source p ntinue p
the ide t of ide
object s reache db, anot nterrupt ed, the ntly int
independent part of the , at object sembler is perand with r tape. At ountered, t rimer is in recessing, ntifi cation ntifiers th generation d. If, wit her use pse
procedure trail back errupted so
ly decurrent genera
able to a segobject
he object
terrupted.
using speci fied
at s ati s fy
process
h i n the
udo is en
takes
must be
urce primer.
LIBRARY 500RC6PRIMfiR CONTAiMS
5e<»MBNT : -A8C';

 [image: Picture #28]

 NEwuv A$sKfs/\eueo
«CORCB-F>RlMerR. CONTACKJIMG- A,
"use" PSEUOO.
r
USE :a6c
iMre^OPT O-'STRlNfr GeNfi^^A-ritklsl^ AND IM»-nATff A SeA^CM f=OQ, THE SEGMEMT •♦A8c'* 6J>4 ANOTHER LieftAR.Y SOURCE-Ppl/ueRy COfs(TAIM(f<<& THfi S6C9M6Kr ; •«a8C V

 [image: Picture #29]

 92
•DPL-1
WHERE; AND:
AND:
CLASS: PSEUDO
END SEGMENT
	OBJECT 1 1 SOURCE

	IjOX-YXX ' ' END: PNN, LLL. 10X-YXX 1 END: RRR.

10X is a Branch command. X is the page within Section I. YXX is the location.
WHERE: NN is the decimal page address. AND: LLL is the decimal location. AND: RRR is a symbolic reference.
DESCRIPTION:
The END pseudo instruction is used to define the end of a program segment or overlay and to identify the starting address for program execution. This starting address may be different than the origin address and is specified as an absolute or symbolic address within Section I. For multiple segment programs, the starting address from the last encountered END instruction is used.
The END pseudo generates a Branch Unconditional instruction to the address specified by the operand.
At object generation time, this generated Branch instruction is inserted into the background in the corresponding location of Page 2, locations 2 and 3, and is used as the entry point within the section assigned (PjO2-0jOj0) at execution time. If the format (END:*+jO.) is used, this branch address will not be inserted into the background. This format is commonally used to terminate and overlay.
EXAMPLE:
PPP-LLL: MP1-MP2-MP3-MP4. E
Plj0-je)j0j3: 174-jOll
	SEQ. NO. LAB: VERB
	OPERANDS
	COMMENTS

	13-14JD. SEG:
	XYZ.
	

	13-150. ORG:
	P08, 000.
	

	*13-160.
	
	

	*13-170.
	
	

	13-180. BGN: IOC,
	C#4; 011.
	DISPLAY

	*13-19^.
	
	

	*13-200.
	
	

	14-010. END:
	BGN.
	LINK TO BEGIN

93
'DPL-1
PSEUDO
EJECT
OBJECT
SOURCE
EJT: 000.
DESCRIPTION:
The EJT pseudo instruction causes the printer to go to Top of Form before printing out the next instruction, during a Source Listing operation. It thus allows the programmer to set up the listings in easily read formats. The Sequence Number for this instruction, but not the instruction itself, is printed on the Source Listing.
94
DPL-1
CLASS 1: BRANCH AND I/O
MINI-TAPE
	OBJECT 1 1 SOURCE

	17j0f) II
171 VFFF II IOC, C#N; FFF.
172 \ II
II

WHERE: FFF is Function Code WHERE:
N=jD Current tape channel selected, N=l Tape cartridge #1 selected. N=2 Tape cartridge #2 selected.
TIMING: 4-6 Microseconds
FFF (Function Codes) DESCRIPTION
jQjO0 FOR^'ARD, SLOW, ERASE
Start Tape Forward with Erase. This command sets the run direction and the erase control for the selected tape channel. This command initiates a Tape Write Routine. Since the Erase is active, the tape will be erased until subsequent write data commands. After this command is given, a time delay of approximately 30 M sec should be given to allow the tape to reach a stable speed of 10 in/sec. before the writing df data is begun.
mi FORWARD, SLOW
This Instruction starts the selected tape forward with Erase condition off. This instruction generally initiates a tape read sequence.
002 FORWARD, FAST
This command sets the run, forward, and high speed control in the tape electronics starting the tape forward at 40 inches/sec.
ms REVERSE, SLOW
This command sets the run control, resets the high speed and forward control, starting the tape reverse normal speed. When the Forward Control is in reset state, the erase function is inhibited preventing the erasing of data on any tape reverse condition. When in reverse if the clip comes home, (tape rewound) the run control is reset stopping tape motion.
REVERSE, FAST
This command is identical to the reverse normal command except the tape is driven at high speed 40 inches/sec.
95
IOC
FFF (Function Codes) DESCRIPTION CONTINUED
005 STOP
This command resets the run control stopping tape. Again, the channel may or may not be specified.
m7 TAPE TRANSFER BYTE AND 207 TAPE TRANSFER BYTE, SKIP
This command controls the transfer of characters to and from the tape interface. The transfer is controlled by a Busy or Not Ready condition within the tape controls and can be executed in two modes. Stall on Busy, and Skip on Busy. When executed in the Stall if Busy mode, the program stalls at the transfer byte instruction until a tape sprocket is generated indicating that a byte has been written or read. In the Skip on Busy mode, the program automatically skips the next sequential instruction if a character has not been received.*
When a program is in a Read or Write subroutine, a Transfer Byte instruction must be given eyery 512 us. I.E. - the loop from transfer byte to transfer byte must not exceed 512 us.
010 WRITE MODE
This command sets the write operation and begins the timing sequence that controls the writing frequency, loads and shifts the tape buffer and generates the sprockets to drop the stall condition.
This command will follow the start forward normal with erase command, the time delay and any set-up commands. Included in the set-up instruction should be a loading of the ACC with the first to be written. Immediately following the write set should be a transfer byte command. The write set must be given only once in a write sequence.
011 READ MODE
This command activates the tape read circuitry within the tape systems. It has to be executed only once in a normal tape read sequence. The setting of the Read condition/resets the Write condition.
012 REWIND
This command will set a rewind F/F for the specified tape or the current tape which will be reset only by the clip-in signal. This permits overlapped rewinds or rewinding one tape while performing an operation on the other tape.
*NOTE: The Accumulator value is destroyed after execution of a "Skip/ Busy" Instruction.
96
FFF (Function Codes) DESCRIPTION: Continued
016 SELECT DECK 1 IF N=l, DECK 2 IF N=2 & LOAD ITS STATUS (PAIR 1)
026 SELECT DECK 3 IF N=l, DECK 4 IF N=2 & LOAD ITS STATUS (PAIR 2)
036 SELECT DECK 5 IF N=l, DECK 6 IF N=2 & LOAD ITS STATUS (PAIR 3)
046 SELECT DECK 7 IF N=l, DECK 8 IF N=2 & LOAD ITS STATUS (PAIR 4)
These commands will Select a Tape Deck and load its status
in the Accumulator. If N=0, the status of the current deck will be loaded.
7 6 5 4 3 2 10
Not Used EOT
Clip Out
Tape - Cartridge Out
Tape Runaway
I/O STATUS
Tape Error
Keyboard Error
This instruction will end a read sequence. After the status has been loaded to the Accumulator, the Read, Runaway and Tape Error will be reset. It is important that this command be given before stopping tape and before the end of the block. Either of these conditions gives an energy dropout and a resulting tape error.
This instruction may ask for either channel or the current channel. A specific channel rewind test to determine end of rewind. It the error status on both decks of a selected command will reset the error. A Tape error of a block of data if a significant crossing window or any energy dropout of 2 ms occurs runaway condition occurs if the read F/F is detected for approximately 5 sec at normal s speed. These conditions set the tape error respectively.
of one of the 4 PAIRS command is useful in a is not possible to check
pair since the first occurs during the reading
falls outside of the data during a write check. A set and no energy is peed or 50 M sec at high F/F and the runaway F/F
When either F/F is set the tape logic forces the generation of sprockets from the internal timing rather than data, to allow the program loop to finish.
The runaway condition will also reset the run F/F, stopping tape.
97
CLASS 1: BRANCH AND I/O
KEYBOARD
OBJECT
173-FFF
SOURCE
IOC, C#3; FFF,
TIMING:
6 Microseconds.
WHERE: FFF is the Function Code
FFF (Function Codes) Description
mi KEYBOARD TRANSFER BYTE AND 2)37 KEYBOARD TRANSFER BYTE, SKIP
This command controls the transfer of characters from the keyboard interface to the accumulator. The transfer is controlled by a Busy or Not Ready condition within the keyboard controls and can be executed in two modes. Stall on Busy, and Skip on Busy. When executed in the Stall Busy mode, the program stalls at the transfer byte instruction until a keyboard sprocket is generated indicating that a byte is ready to be transferred. In the Skip on Busy mode, the program automatically skips the next sequential instruction if a character has not been received.
NOTE: The Accumulator value is destroyed after execution of a "Skip if Busy" Instruction.
1313 BEEP
This command will produce an electronic beep. This may be used for feedback to the operator after a keystroke, an error tone, etc.
016 LOAD STATUS
This command will load a status word to the ACC. The J) bit signals a keyboard error. The other bits reflect the I/O and current tape status.
if
98
DPL-1
CLASS 1
DISPLAY CONTROL
OBJECT
174-FFF
SOURCE
IOC, C#4; FFF.

 [image: Picture #30]

 WHERE: FFF is the function code.
DESCRIPTION:
The function code has the following structure: FFF = SS-LIU-DLM
WHERE:
is the section bits of the page to be displayed.
is the level bits of the page number to be displayed.
is the interleave bit in 8 line display mode and the half page (zone)
bit in 4 line display mode. See note for def. of interleave.
is the underscore bit. When U = 1, any display character with a
bit 6 will be underscored.
is the disable CRT bit.
is the 4/8 line mode select bit. If M = 0, the 8 line display mode
is selected.
TIMING: 4 Microseconds.
EXAMPLE:
174174-020 174-001 174-021
8 line normal mode - page 0
8 line interlace mode - page 0
4 line odd zone (zone 1) - (P00-200 thru
4 line even zone (zone 0) -(P00-000 thru
P00' P00.
■377), ■177).
Note on Interleave: (8-line option only)
In the normal display mode (not interleaved), a page will be displayed in continuous fashion, location 000 through 377, octal notation.
	Line 1
	Loc.
	180)9 Octal
	through
	Loc.
	037 Octal

	Line 2
	Loc.
	040 Octal
	through
	Loc.
	077 Octal

	Line 3
	Loc.
	100 Octal
	through
	Loc.
	137 Octal

	Line 4
	Loc.
	140 Octal
	through
	Loc.
	177 Octal

	Line 5
	Loc.
	200 Octal
	through
	Loc.
	237 Octal

	Line 6
	Loc.
	240 Octal
	through
	Loc.
	277 Octal

	Line 7
	Loc.
	300 Octal
	through
	Loc.
	337 Octal

	Line 8
	Loc.
	340 Octal
	through
	Loc.
	377 Octal

99
DISPLAY (cont.)
The interleave mode will display this information in the following sequence:
Loc. jD|D0 Octal through Loc. jZ)37 Octal
Loc. 200 Octal through Loc. 237 Octal
Loc. 040 Octal through Loc. 077 Octal
Loc. 240 Octal through Loc. 277 Octal
Loc. 100 Octal through Loc. 137 Octal
Loc. 300 Octal through Loc. 337 Octal
Loc. 140 Octal through Loc. 177 Octal
Loc. 340 Octal through Loc. 377 Octal
Display Page 09 (Octal Page 11)
Comments 4 lines from loc. 000 to 177, No Underscore.
4 lines from loc. 200 to 377, With Underscore.
8 lines from loc. 000 to 377.
8 lines from loc. 000 to 377, With Underscore.
8 lines Interleaved
8 lines With Underscore and Interleaved.
	Li
	ne
	1
	

	Li
	ne
	5
	

	Li
	ne
	2
	

	Li
	ne
	6
	

	Li
	ne
	3
	

	Li
	ne
	7
	

	Li
	ne
	4
	

	Line
	8
	

	EXAMPLE:
	Dis

	IOC,
	C#4'
	,123.

	IOC,
	C#4'
	,113.

	IOC,
	C#4;102.

	IOC,
	C#4
	,112.

	IOC,
	C#4
	,122.

	K
	DC,
	C#4
	,132.

100
	
	APPENDIX
	

	DPL-1 INSTRUCTION SET
	Class 1
	Branch and I/O Instructions

	
	
	Mnemonic
	BRU BRE

	Class 0
	Jump Instructions
	
	BRH BRL

	Mnemonic
	TLJ+
	
	

	
	TLJ
	Timing
	4 us Branch, 3* us NO Branch

	Timing
	4 us Jump, 3* us NO Jump
	Description
	Branch Unconditional Branch on Equal

	Description
	Test Literal and Jump
	
	Branch on High

	
	Compare the instruction Literal to the Accumulator.
	
	Branch on Low

	
	On comparison equal jump +NNNN. On comparison
	
	On condition, branch directly to the 11 bit address

	
	not equal execute next instruction.
	
	carried in the instruction. Condition register previously set by a Jump or Compare instruction. The

	Binary Format
	7654321076543210
	
	11 bits of the direct address replace the least significant 11 bits of the current lAW.

	TLJ+
	OOONNNNOLLLLLLLL
	
	

	TLJ
	OOONNNNl LLLLLLLL
	Binary Format
	76543210 76543210

	Mnemonic
	TMJ+
	BRU
	0 1 OOOAAA AAAAAAAO

	
	TMJ
	BRE
	OlOOOAAA AAAAAAAl

	
	
	BRH
	OIOOIAAA AAAAAAAO

	Timing
	4 us Jump, 3* us NO Jump
	BRL
	OIOOIAAA AAAAAAAl

	Description
	Test Mask and Jump
	Notes 1.
	The least significant bit of the direct address is

	
	Compare the instruction Mask to the Accumulator.
	
	assumed to be zero and that bit in the instruction is

	
	On comparison equal jump +NNNN. On comparison
	
	used as part of the operation code.

	
	not equal execute next instruction. Mask logical ones
	
	

	
	are only bits compared.
	
	

	Binary Format
	76543210765 4 32 10
	
	

	TMJ+
	001NNNNOMMMMMMMM
	
	

	TMJ
	001NNNNlMMMMMMMM
	Class 1
	Branch and I/O Instructions

	Notes
	1. Condition register set for +, -, = compare.
	Mnemonic
	SBU

	
	2. Jump past section boundary allowed.
	
	SBE

	
	3. N = Jump Count
	
	SBH

	
	L = Literal
	
	SBL

	
	M = Mask
	
	

	
	
	Timing
	4 us Branch, 3* us NO Branch

	Mnemonic
	TLX
	
	

	
	TMX
	Description
	Stack and Branch Unconditional Stack and Branch on Equal

	Timing
	4 us
	
	Stack and Branch on High Stack and Branch on Low

	Description
	Test Hteral and exit, test mask and exit.
	
	On condition, increment the stack pointer, store the

	
	Compare the instruction literal/instruction mask to
	
	11 bit direct address carried by the instruction into

	
	the accumulator. On comparison equal, exit. On
	
	the least significant 11 bits of the new IAS member

	
	comparison not equal, execute next instruction. Mask
	
	and branch to the resulting I AW. The condition

	
	logical ones are only bits compared.
	
	register is set by a previous Jump or Compare instruction.

	Binary Format
	7 6 543210 765432 10
	
	

	
	
	Binary Format
	76543210 76543210

	TLX
	00000000 LLLLLLLL
	
	

	TMX
	00100 0 00 MMMMMMMM
	SBU
	OIOIOAAA AAAAAAAO

	
	
	SBE
	OIOIOAAA AAAAAAAl

	Notes:
	1. Condition register set for +, -, = compare.
	SBH
	0101 lAAA AAAAAAAO

	
	2. L = hteral
	SBL
	0101 lAAA AAAAAAAl

	
	M = mask
	
	

	
	
	Notes 1.
	The least significant bit of the direct address is assumed to be zero and that bit in the instruction is used as part of the operation code.

	
	
	2.
	A = Address

	♦If the instruction
	is located at the low order address of any page, 1 uSec is added
	
	

	to the instruction time to propagate the carry of the +2 add to the high order
	
	

	portion of the address.
	
	

101
	Class 1
	Branch and I/O Instructions
	Class 1
	Branch and I/O Instructions

	Mnemonic
	EXU
	Mnemonic
	SMC

	
	EXB
	
	SSC

	Timing
	4 us
	Timing
	4 us

	Description
	Exit Unconditional
	Description
	Set memory control.

	
	Exit and Branch
	
	Set memory section and control.

	
	The exit instructions decrement the Stack Pointer
	
	When the U bit is set to 0, the address of the index

	
	and retum program control to the previous IAS
	
	registers is memory location 1-7 and direct addressing

	
	position. For EXU the lAW in that position is used.
	
	is only available in page 0 of section 0. When the U

	
	For EXB the 11 least significant bits of the lAW in
	
	bit is set to 1, the effective index register address is

	
	that position are replaced by the 11 bit direct address
	
	location 1-7 of the section where the indexed

	
	carried in the instruction.
	
	instruction is being executed. Likewise the effective direct address is page 0 of the section where the

	Binary Format
	76543210 765-4 3210
	
	direct address instruction is being executed.
When the V bit is set to 1 any branch, stack &

	EXU
	01100000 00000000
	
	branch, or exit & branch instructions given with page

	EXB
	OlllOAAA AAAAAAAO
	
	0 specified in the branch address will cause the branch to occur with the current section and page of

	Notes 1.
	The least significant bit of the direct address is
	
	the program. If any page other than 0 is specified in

	
	assumed to be zero and that bit in the instruction is
	
	the branch address, the V bit control is inactive and a

	
	used as part of the operation code.
	
	normal branch will occur.

	2.
	A = Address
	
	Set memory section and control is a combination of set memory section and set memory control instructions.

	
	
	Binary Format
	76543210 76543210

	
	
	SMC
	01101001 UVO 00000

	Class 1
	Branch and I/O Instructions
	SSC
	01101010 UVSSSOOO

	Mnemonic
	SMS
	
	

	Timing
	4 us
	
	

	Description
	Set memory section
	
	

	
	Provides a means of transfering control from the
	Class 1
	Branch and I/O Instructions

	
	current section to an outside section.
	
	

	
	
	Mnemonic
	SAC

	Binary Format
	765 4 3210 76543210
	
	

	
	
	Timing
	4 us

	SMS
	01101000 OOSSSOOO
	
	

	
	
	Description
	Set arithmetic condition.

	Notes I.
	S is the section bits defining the section that control
	
	Arithmetical conditions of the processor will be

	
	will be transfered to.
	
	forced to a +, -, = condition dependent upon the state of Ace. bits 4 & 5. 00 sets -,01 sets +,10 sets =, and 11 is invalid.

	
	
	Binary Format
	76543210 76543210

	
	
	SAC
	01101011 00000000

	
	
	Ace. (force +)
	0 0 0 10 0 0 0

	
	
	Ace. (force -)
	00000000

	
	
	Ace. (force =)
	0 0 10 0 0 0 0

	*If the instruction
	is located at the low order address of any page, 1 uSec is added
	
	

	to the instruction time to propagate the carry of the +2 add to the high order
	
	

	portion of the address.
	
	

102
	Class 1
	Branch and I/O Instructions
	Class 1
	Branch and I/O Instructions

	Mnemonic
	LSW
	Mnemonic
	LPS Load Processor Status

	Timing
	4 us
	Timing
	3* us

	Description Binary Format
	Load sense switches.
The state of 8 toggle switches (located in the switch
well under the CRT screen) to the accumulator.
76543210 76543210
	Description
Binary Format LPS
	Execution of this command transfers a hardware status word to the accumulators.
76543210 7 6543210 01101101 00000000

	LSW Class 1
Mnemonic
Timing
	0110110 0 00000000
Branch and I/O Instructions
DPI EPI CPI
4 us
	ACC BIT
0
1 2 2 3 4 5 6 7
	Stack Pointer Address Bit 2^ Stack Pointer Address Bit Ir Stack Pointer Address Bit 2^ Stack Pointer Address Bit 2^* Plus Condition Equal Condition Interrupt Overflow Program Interrupt Switch

	Description
	Disable processor interrupt.
Enable processor interrupt.
Clear processor interrupt.
The automatic stack and branch that results from an
interrupt is program enabled or disabled. The
interrupt overflow indicator can be reset by the clear
instruction.
	
	

	Binary Format
	76543210 76543210
	
	

	DPI EPI CPI
	0 110 1110 0 0 0 0 0 0 0 0 01101110 00000001 01101110 00000010
	
	

	Class 1
	Branch and I/O Instructions
	
	

	Mnemonic
	IOC
	
	

	Timing
	3* us
	
	

	Description
	Input/Output Control
This instruction is used for all input and output operations. The IWL is used to designate the I/O sub-class and to pick the I/O device. The IWR designates the function to be performed.
	
	

	Binary Format
	76543210 76 543210
	
	

	IOC
	Ollllnnn yyxxxxxx
	
	

	Notes 1.
	n = Device designation
y, X = Command micro-code
	
	

	2.
	Appendix C gives detailed listing of all IOC commands.
	
	

	♦If the instruction is located at the low order address of any page, 1 uSec is added to the instruction time to propagate the carry of the +2 add to the high order portion of the address.
	
	

103
	Class 2
	
	Transfer and Arithmetic Instructions
	Class 2
	
	Transfer and Arithmetic Instructions

	Mnemonic
	
	L D X L D A S T A
	Mnemonic
	
	A D X ADA S U X
SUA

	Timing
	
	4* us for Immediate Add.
	
	
	

	
	
	5 us for Direct Addressing
	Timing
	
	4* us for Immediate Addressing

	
	
	6 us for Indexed Addressing
	
	
	5 us for Direct Addressing
6 us for Indexed Addressing

	Description
	
	Load Index register
	
	
	

	
	
	Load Accumulator
	Description
	
	Add to Index register

	
	
	Store Accumulator
	
	
	Add to Accumulator

	
	
	Specified index register is loaded with a literal carried
	
	
	Subtract from Accumulator

	
	
	in the instruction. The accumulator is loaded using
	
	
	Specified index register is operated on with the Hteral

	
	
	immediate, direct or indexed addressing modes. The
	
	
	carried in the instruction. The accumulator

	
	
	accumulator is stored in a direct or indexed address.
	
	
	operations specify the operand by immediate, direct

	
	
	In indexed addressing modes the specified index
	
	
	or indexed addressing. In indexed addressing the

	
	
	register may be automatically incremented or
	
	
	specified index register may be automatically

	
	
	decremented.
	
	
	incremented or decremented.

	Binary Format
	76543210 76543210
	Binary Format
	76543210 76543210

	
	L
	DX lOOOOXXX LLLLLLLL
	
	A
	DX lOlOOXXX LLLLLLLL

	(LA)
	L
	DA 10000000 LLLLLLLL
	(LA)
	ADA 10100000 LLLLLLLL |

	(DA)
	L
	DA 10001000 AAAAAAAA
	(DA)
	A
	DA 10101000 AAAAAAAA

	(I A)
	L
	DA lOOOlXXX AAAAAAYY
	(I A)
	A
	DA lOlOlXXX AAAAAAYY

	(DA)
	S
	TA 10011000 AAAAAAAA
	
	S
	UX lOllOXXX LLLLLLLL

	(I A)
	S
	TA 1001 IXXX AAAAAAYY
	(LA)
	S
	UA 10110000 LLLLLLLL

	
	
	
	(DA)
	S
	UA 10111000 AAAAAAAA

	Notes: 1.
	
	X = index register number L = literal
	(I A)
	S
	UA 10111 XXX AAAAAAYY

	
	
	A = address
	Notes 1.
	
	L = Uteral

	
	
	Y = index modifier
	
	
	A = address
X = index register

	2.
	
	LA = Immediate Addressing DA = Direct Addressing lA = Indexed Addressing
	
	
	Y = index modifier

	3.
	
	Direct address 00000000 is invalid.
	
	
	

	Mnemonic
	
	LIA
	
	
	

	Timing
	
	4* us
	
	
	

	Description
	
	Load instruction address.
This instruction will transfer the 8 least significant bits of the current instruction address to the specified index register. If the instruction literal is 000, then the section and page of the current instruction address is transfered to the accumulator. If the literal is not 000, then the Uteral is transfered to the accumulator.
	
	
	

	Binary Format
	76543210 76543210
	
	
	

	LIA
	
	lOOlOXXX LLLLLLLL
	
	
	

	Notes: 1.
	
	X = Index Register number
	
	
	

	2.
	
	L = Literal
	
	
	

	3.
	
	A = Address
	
	
	

	*If the instruction is located at the low order address of any page, 1 uSec is added
	
	
	

	to the instruction time to propagate the carry of the +2 add to the high order
	
	
	

	portion of the address.
	
	
	

104
	Class 3
	
	
	Boolean and Compare Instructions
	Class 3
	Boolean and Compare Instructions

	Mnemonic
	
	
	ANA SAN
	Mnemonic
	C P A C P X

	
	
	
	ERA SER I R A
	Timing
	4* us Direct Address 6 us Indexed Address

	Timing Description
	
	
	SIR
4* us
AND to Accumulator
Shift and AND to Accumulator
EXCLUSIVE OR to Accumulator
Shift and EXCLUSIVE OR-to Accumulator
INCLUSIVE OR to Accumulator
Shift and INCLUSIVE OR to Accumulator
Result OPERAND Accumulator AND FOR lOR
	Description Binary Format
	Compare Accumulator Compare Index Register
The CPX instruction compares the contents of the specified index register to the Uteral carried in the instruction. The CPA instructions compare the contents of the Accumulator to a Uteral or to the contents of a direct or indexed address. In the indexed addressing mode the index register may be incremented or decremented. All comparison results are stored in the Condition Register as high, low or equal.
76543210 76543210

	
	
	
	0 0 0 0 0
0 10 11
1 0 0 11 1 110 1
	C P (LA) C P (DA) C P (I A) C P
	X 1110 0 XX X LLLLLLLL A 11100000 LLLLLLLL A IIIOIOOO AAAAAAAA A IIIOIXXX AAAAAAYY

	
	
	
	All shift instructions are right circular and literal addressing only. Remaining instructions use literal, direct or effective addressing. In indexed addressing mode, the specified index register may be incremented or decremented. Shifts take place prior to logical operation.
	Notes 1.
	L = literal
X = index register
A = address
Y = index modifier

	Binary Format
	
	7654 3210 76543210
	
	

	(LA) (DA) (I A)
(LA) (DA) (I A)
(LA) (DA) (I A)
	ANA 11000000 LLLLLLLL ANA 11001000 AAAAAAAA ANA IIOOIXXX AAAAAAYY SAN llOOOSSS LLLLLLLL ERA 11010000 LLLLLLLL ERA 11011000 AAAAAAAA ERA IIOIIXXX AAAAAAYY SER IIOIOSSS LLLLLLLL IRA 11110000 LLLLLLLL IRA 11111000 AAAAAAAA IRA lllllXXX AAAAAAYY SIR llllOSSS LLLLLLLL
	
	

	Notes 1.
	
	
	L = literal
A = address
X = index register
Y = index modifier
S = shift count
	
	

	2.
	
	
	Direct address of 00000000 is invalid.
	
	

	*If the instruction is located at the low order address of any page, 1 uSec is added to the instruction time to propagate the carry of the +2 add to the high order portion of the address.
	
	

105
	IOC COMMANDS
	

	Class 1
	Branch and I/O Instructions

	Mnemonic
	IOC

	Timing
	3* us

	Description
	Input/Output Control

	
	This instruction is used for all input and output

	
	operations. The IWL is used to designate the I/O

	
	sub-class and to pick the I/O device. The IWR

	
	designates the function to be performed.

	Binary Format
	76543210 76543210

	IOC
	Ollllnnn yyxxxxxx

	Definition of nnn:
	

	nnn
	I/O sub-class

	0
	current tape channel

	1
	tape channel 1

	2
	tape channel 2

	3
	keyboard

	4
	CRT

	5
	coaxial interface

	6
	communications interface

	Definition of yxx for the tape channel:

	yxx
	Function

	000
	start tape fwd, slow, erase

	001
	start tape fwd, slow

	002
	start tape fwd, fast

	003
	start tape rev, slow

	004
	start tape rev, fast

	005
	stop tape

	007
	transfer byte

	207
	transfer byte, skip next instruction if busy

	010
	write byte

	Oil
	read byte

	012
	rewind

	016
	read status

106
The Read Status instruction will transfer a status word to the accumulator. This is structured as follows:
	Ace bit
	Meaning

	0
	keyboard error

	1
	tape error

	2
	I/O status

	3
	runaway

	4
	cartridge out

	5
	cHp out

	6
	end of tape

	7
	spare

Definition of yxx for the keyboard channel:
yxx Function
007 transfer byte
207 transfer byte, skip next instruction if busy
013 keyboard beep
Definition of yxx for the CRT channel:
yxx for the CRT has the following structure:
S S P I U D P M
WHERE: S is the section bits of the page to be displayed
P is the page bits of the page to be displayed I is the interleave bit in 8 line display mode and
the half page (zone) bit in 4 line display mode. U is the underscore bit. When U = 1, any display character
with a bit 6 will be underscored. D is the disable CRT bit M is the 4/8 line mode select bit. If M = 0, the
8 line mode is selected.
If the character to be displayed has a 2q bit, this character position will be blanked.
Definition of yxx for the coaxial interface:
	yxx
	Function

	000
	start transmit

	001
	receive byte

	201
	receive byte, skip next instruction if busy

	002
	transmit data byte

	003
	transmit control byte

	004
	stop transmit

	006
	inhibit line

	007
	set device address

	010
	set master mode

	Oil
	set slave mode

Definition of yxx for the communications interface:
	yxx
	Function

	000
	transfer ace. to queue reg.

	001
	select comm. interface mode

	002
	transfer queue to reg. to ace.

	004
	present status

107
December 1972
Manual No. S-100-2
COGAR IIMFORMATIOINI SYSTEMS, IIMC.
COSBY MANOR ROAD UTICA, NENA/ YORK 13502 C3153 737-5750
EPUB/images/img_0011.png

EPUB/images/cover.png
COGAR

SYSTEM 4¢

PROGRAMMER’S
REFERENCE
MANUAL

EPUB/images/img_0015.png

EPUB/images/img_0014.png

EPUB/images/img_0013.png

EPUB/images/img_0012.png

EPUB/images/img_0019.png

EPUB/images/img_0018.png

EPUB/images/img_0017.png

EPUB/images/img_0016.png

EPUB/images/img_0020.png

EPUB/images/img_0010.png

EPUB/images/img_0022.png

EPUB/images/img_0009.png

EPUB/images/img_0021.png

EPUB/images/img_0006.png

EPUB/images/img_0026.png

EPUB/images/img_0005.png

EPUB/images/img_0025.png

EPUB/images/img_0008.png

EPUB/images/img_0024.png

EPUB/images/img_0007.png

EPUB/images/img_0023.png

EPUB/images/img_0030.png

EPUB/images/img_0029.png

EPUB/images/img_0028.png

EPUB/images/img_0027.png

EPUB/images/img_0002.png
HIGH
LOW
EQUAL

EPUB/images/img_0001.png
HIGH
LOW
EQUAL

EPUB/images/img_0004.png

EPUB/images/img_0003.png

